Abstract
Encapsulating SiC with a carbon layer (C-cap) is a widely used technique to avoid step bunching during post implantation annealing. In this work we propose a mechanism that explains the roughening that the surface unavoidably undergoes during annealing under the C-cap. We investigated the reactions occurring at the interface between 4H-SiC and the C-cap by scanning electron microscopy, energy-dispersive X-ray spectroscopy, and atomic force microscopy carried out at different stages of the sample processing: just after annealing, after C-cap removal in dry Oxygen, and after cleaning in buffered oxide etch solution. Our observations show that, even though the C-cap roughens for increasing annealing temperature and time, it is not visibly damaged even after 1950 °C 30 min annealing. After the C-cap removal the 4H-SiC surface was covered by a network of clusters that are eventually removed by buffered oxide etch solution. This occurrence suggests that, during the post-implantation annealing, the 4H-SiC surface decomposes and the escaped Si and C atoms are trapped inside the C-cap or at the interface between 4H-SiC and the C-cap. While C clusters are etched off in the dry O2 atmosphere, the Si clusters oxidize and form SiO2 nanoparticles which are finally etched by buffered oxide etch.
Publisher
Trans Tech Publications, Ltd.
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献