Abstract
Broad-crested weirs (BCW) are often used in hydraulic engineering and water management. The most complex factor that affects the discharge capacity of BCW is the discharge coefficient. In Ukrainian engineering practice, the flow rate of BCW is defined as a function of the relative height of the spillway wall, while in the most common European methods – as a function of the relative length of the weir. The experimental dependences of the discharge coefficient of rectangular sharp-edged BCW with vertical inlet and outlet walls with the ratio of the weir length and height d/Р = 2; 4 are obtained. A comparison of the obtained results with the values of the discharge coefficient of the same BCW using the methods of Kumin and Hager indicates that this coefficient depends on both the height of the wall and the length of the weir. The corresponding empirical power law dependences are obtained. At the same values of the relative height of the wall, the discharge coefficient for the weir with the ratio d/Р = 4 is significantly lower comparing the weir with d/Р = 2, that can be explained by the more significant effect of friction resistance for the weir with longer threshold.
Publisher
Lviv Polytechnic National University
Reference17 articles.
1. Discharge characteristics of weirs of finite crest length with upstream and downstream ramps;Azimi;Journal of Irrigation and Drainage Engineering,2013
2. Badr, K., Mowla, D. (2014). Development of rectangular broad-crested weirs for flow characteristics and discharge measurement. KSCE Journal of Civil Engineering, 19(1), 136-141. DOI: 10.1007/s12205-012-0433-z
3. Bolshakov, V.A. (1984) Spravochnyk po gidravlike. Kyiv, Vyshcha shkola, 343 pp. (in Russian).
4. Broad-crested weir;Нager;Journal of Irrigation and Drainage Engineering,1994
5. Govinda Rao, N.S., Muralidhar, D. (1963). Discharge characteristics of weirs of finite-crest length. La Houille Blanche, 5, 537-545. doi.org/10.1051/lhb/1963036
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献