Study on the Influence of Direct Contact Network Topology on the Speed of Spread of Infectious Diseases in the Covid-19 Case

Author:

Kuryliak YulianORCID, ,Emmerich MichaelORCID,Dosyn DmytroORCID, ,

Abstract

The management of epidemics received much interest in recent times, due to devastating outbreaks of epidemic diseases such as Ebola and COVID-19. This paper investigates the effect of the structure of the contact network on the dynamics of the epidemic outbreak. In particular we focus on the peak number of critically infected nodes, because this determines the workload of intensive health-care units and should be kept low when managing an epidemic. Simulation of virus propagation in complex networks of different topologies, generated according to the models of Erdős—Rényi, Watts-Strogatz, Barabási—Albert and in complete graph. Continuous-time Markov chains were used to simulate the infection process. The simulation was performed in networks with 200 nodes and different number of edges. The difference between the influence of age- and gender-determined and weighted characteristics of nodes on the number of critically infected nodes that can be used to predict the load on the hospital is analyzed. The analysis used the data of the demographic distribution of Ukraine as of 2020 and data on mortality from COVID-19 in Ukraine, as of December 16, 2020. It is proved that the deterministic characteristics a slightly lower values of critically infected, in small networks. According to the simulation results, it was proven that for one medium degree of connection, the largest peak number of infections is observed in the Barabási—Albert models, slightly less in the Erdős— Rényi models and the smallest in the Watts-Strogatz model. It is established that the main difference between these networks is the average shortest distance. It is proved that the main influence on the propagation rate has the average shortest distance between network nodes, location, clustering coefficient has less influence. It was found that with a large number of edges in the networks, the difference in the prevalence of viruses in the models of the Erdős—Rényi and Barabási—Albert networks is minimized, despite the reduction of the average shortest distance between nodes.

Publisher

Lviv Polytechnic National University

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3