A novel Monte Carlo simulation procedure for modelling COVID-19 spread over time

Author:

Xie Gang

Abstract

AbstractThe coronavirus disease 2019 (COVID-19) has now spread throughout most countries in the world causing heavy life losses and damaging social-economic impacts. Following a stochastic point process modelling approach, a Monte Carlo simulation model was developed to represent the COVID-19 spread dynamics. First, we examined various expected performances (theoretical properties) of the simulation model assuming a number of arbitrarily defined scenarios. Simulation studies were then performed on the real COVID-19 data reported (over the period of 1 March to 1 May) for Australia and United Kingdom (UK). Given the initial number of COVID-19 infection active cases were around 10 for both countries, the model estimated that the number of active cases would peak around 29 March in Australia (≈ 1,700 cases) and around 22 April in UK (≈ 22,860 cases); ultimately the total confirmed cases could sum to 6,790 for Australia in about 75 days and 206,480 for UK in about 105 days. The results of the estimated COVID-19 reproduction numbers were consistent with what was reported in the literature. This simulation model was considered an effective and adaptable decision making/what-if analysis tool in battling COVID-19 in the immediate need, and for modelling any other infectious diseases in the future.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Reference17 articles.

1. Zhang, J. et al. Evolving epidemiology and transmission dynamics of coronavirus disease 2019 outside Hubei province, China: a descriptive and modelling study. Lancet Infect. Dis. https://doi.org/10.1016/S1473-3099(20)30230-9 (2019).

2. Roser, M., Ritchie, H., Ortiz-Ospina, E. & Hasell, J. Coronavirus pandemic (COVID-19) (2020)

3. Ciarochi, J. Modeling Infectious Diseases, vol. 2020. https://triplebyte.com/blog/modeling-infectious-diseases (2020).

4. Fitzpatrick, M. C., Bauch, C. T., Townsend, J. P. & Galvani, A. P. Modelling microbial infection to address global health challenges. Nat. Microbiol. 4, 1612–1619 (2019).

5. Sattenspiel, L. Yearbook of Physical Anthropology 245–276 (Wiley-Liss Inc., Hoboken, 1990).

Cited by 40 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3