Abstract
The requirements for a mobile robotic platform (MRP) with an intelligent traffic control system and data transmission protection are determined. Main requirements are the reduction of dimensions, energy consumption, and cost; remote and intelligent autonomous traffic control; real-time cryptographic data protection; preservation of working capacity in the conditions of action of external factors; adaptation to customer requirements; ability to perform tasks independently in conditions of uncertainty of the external environment. It is proposed to develop a mobile robotic platform based on an integrated approach including: navigation methods, methods of pre-processing and image recognition; modern methods and algorithms of intelligent control, artificial neural networks, and fuzzy logic; neuro-like methods of cryptographic data transmission protection; modern components and modern element base; methods of intellectual processing and evaluation of data from sensors in the conditions of interference and incomplete information; methods and means of automated design of MRP hardware and software. The following principles were chosen for the development of a mobile robotic platform with an intelligent control system and cryptographic protection of data transmission: hierarchical construction of an intelligent control system; systematicity; variable composition of equipment; modularity; software openness; compatibility; specialization and adaptation of hardware and software to the structure of algorithms for data processing and protection; use of a set of basic design solutions. The basic architecture of a mobile robotic platform with an intelligent traffic control system and data transmission protection has been developed, which is the basis for the construction of mobile robotic platforms with specified technical and operational parameters. To implement neuro-like tools, the method of tabular-algorithmic calculation of the scalar product was improved, which due to the simultaneous formation of k macroparticle products provides k times reduction of the time of the scalar product calculation. Keywords: mobile robotic platform; intelligent processing; architecture; neural network; autonomous control; sensors; data protection.
Publisher
Lviv Polytechnic National University
Reference17 articles.
1. Aleksandrov, V., Vetlugin, R., & Makarenko, A. (2018). Vzgliady voennykh spetcialistov SShA na boevoe primenenie nazemnykh robotekhnicheskikh kompleksov. Zarubezhnoe voennoe obozrenie, 6, 39-43. [In Russian].
2. Alves, R. M. F., & Lopes, C. R. (2016). Obstacle avoidance for mobile robots: A hybrid intelligent system based on fuzzy logic and artificial neural network. In Proc. of the 2016 IEEE Intern. Conf. on Fuzzy Systems (FUZZ-IEEE), Vancouver, BC, Canada, 24-29 July 2016, 1038-1043. https://doi.org/10.1109/FUZZ-IEEE.2016.7737802
3. Bodiansьkii, Ye. V. ta in. (2016). Analiz ta obroblennia potokiv danikh zasobami obchisliuvalьnogo intelektu. Monografiia. Lьviv: Vid-vo Lьviv. politekhniki. [In Ukrainian].
4. Chen, C. L. P., Yu, D., & Liu, L. (2019). Automatic leader-follower persistent formation control for autonomous surface vehicles. IEEE Access, 7, 12146-12155. https://doi.org/10.1109/ACCESS.2018.2886202
5. Denysyuk, P., Teslyuk, V., & Chorna, I. (2018). Development of mobile robot using LIDAR technology based on Arduino controller. 14th International Conference on Perspective Technologies and Methods in MEMS Design, MEMSTECH 2018, Proceedings, 240-244. https://doi.org/10.1109/MEMSTECH.2018.8365742
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献