Disruption of Yeast Cells Xanthophyllomyces Dendrorhous (Phaffia Rhodozyma) by Vibration Resonant Low-Frequency Cavitator

Author:

Stefanyshyn Olha, ,Hunchak Alla,Starchevskyy Volodymyr,Salyha Yuriy, , ,

Abstract

The goal of the study is to optimize the mode of disruption of the yeast Phaffia rhodozyma KNH 1 by a vibration-resonant low-frequency cavitator (VLC). The destruction of the cell biomass of yeast culture P. rhodozyma strain KNH 1 was carried out in VLC with water cooling, the capacity of 800 W, and resonant frequencies of vibrations of 30 Hz, 35 Hz, 37 Hz, 37.8 Hz, 39 Hz, 50 Hz, and in the presence of nitrogen in the reaction medium. Our data suggest that the yield of processed biomass by the treatment of yeast culture in VLC depends on the culture age and the mode of the treatment. Thus, for the six-day culture, we got the highest yield by its processing in VLC at 35 Hz for 75 min. The highest yield from the five-day culture was obtained after the treatment in VLC for 1 h at 37-37.8 Hz. The lowest yield of the disrupted yeast cells was obtained after 5 h of treatment in VLC at 37.8 Hz. The high level of yeast cell disruption can be used for the preparation of glucans aqueous solutions. Our data show that for such a level of disruption to treat five-day culture of P. rhodozyma in VLC at 37 Hz resonance frequency with nitrogen gas, bubbling through the reaction medium is economically profitable. For the first time, this study demonstrates the established optimal mode of destruction of yeast cells of P. rhodozyma strain KNH1 for the action of the vibration-resonance low-frequency cavitator or VLC. Ana¬lysis of the presented data indicates that the claimed me¬thod is convenient, efficient, and technologically justified.

Publisher

Lviv Polytechnic National University

Subject

General Chemical Engineering,General Chemistry

Reference28 articles.

1. [1] Akiba, Y.; Sato, K.; Takahashi, K.; Matsushita, K.; Komiyama, H.; Tsunekawa, H.; Nagao, H. Meat Color Modification in Broiler Chickens by Feeding Yeast Phaffia rhodozyma Containing High Concentrations of Astaxanthin. J. Appl. Poult. Res. 2001, 10, 154-161. https://doi.org/10.1093/japr/10.2.154

2. [2] Stefanyshyn, O.M.; Nechay, H.I.; Boretska, N.I.; Hural, S.V.; Tsepko, N.І. Profilaktychnyi ta korerhuyuchyi vplyv kormovoi dobavky karotynosyntezuvalnykh drizhdzhiv Phaffia rhodozyma na formuvannia mikrobotsenozu kyshkivnyka kurei pid chas

3. krytychnogo periodu yoho stanovlennia. Biologia tvaryn 2013, 15, 125-131. http://nbuv.gov.ua/UJRN/bitv_2013_15_3_19

4. [3] Shoja, B.; Ahmadi, A.R.; Rafiee, F.; Manavi, P.N. Influence of Probiotic Yeast Phaffia rhodozyma on Growth, Survival and Ma-turity of Artemia Urmiana. Asian J. Exp. Biol. Sci. 2012, 3, 355-359.

5. [4] Jacobson, C.K.; Jolly, S.O.; Sedmak, J.J.; Skatrud, T.J.;

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3