Supplier Evaluation Model on SAP ERP Application using Machine Learning Algorithms

Author:

Kohli Manu

Abstract

For business enterprises, supplier evaluation is a mission critical process. On ERP (Enterprise Resource Planning) applications such as SAP, the supplier evaluation process is performed by configuring a linear score model, however this approach has a limited success. Therefore, author in this paper has proposed a two-stage supplier evaluation model by integrating data from SAP application and ML algorithms. In the first stage, author has applied data extraction algorithm on SAP application to build a data model comprising of relevant features. In the second stage, each instance in the data model is classified, on a rank of 1 to 6, based on the supplier performance measurements such as on-time, on quality and as promised quantity features. Thereafter, author has applied various machine learning algorithms on training sample with multi-classification objective to allow algorithm to learn supplier ranking classification. Encouraging test results were observed when learning algorithms,(DT) and Support Vector Machine (SVM), were tested with more than 98 percent accuracy on test data sets. The application of supplier evaluation model proposed in the paper can therefore be generalised to any other other information management system, not only limited to SAP, that manages Procure to Pay process.  

Publisher

Science Publishing Corporation

Subject

Hardware and Architecture,General Engineering,General Chemical Engineering,Environmental Engineering,Computer Science (miscellaneous),Biotechnology

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Neural Network Development for Quality Analysis of ERP Systems;Lecture Notes in Networks and Systems;2024

2. Development of a Predictive Multilayer Perceptron for Quality Analysis of an ERP Systems;2023 16th International Conference Management of large-scale system development (MLSD);2023-09-26

3. Selection of Photovoltaic Devices Using Weighted Sum Method;Renewable and Nonrenewable Energy;2022-09-01

4. A Review of Reliability and Fault Analysis Methods for Heavy Equipment and Their Components Used in Mining;Energies;2022-08-28

5. Mechanical and Thermal Properties of Poly Butylene Succinct (PBS) Nano Composites;REST Journal on Emerging trends in Modelling and Manufacturing;2022-08-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3