A Review of Reliability and Fault Analysis Methods for Heavy Equipment and Their Components Used in Mining

Author:

Odeyar Prerita,Apel Derek B.ORCID,Hall Robert,Zon Brett,Skrzypkowski KrzysztofORCID

Abstract

To achieve a targeted production level in mining industries, all machine systems and their subsystems must perform efficiently and be reliable during their lifetime. Implications of equipment failure have become more critical with the increasing size and intricacy of the machinery. Appropriate maintenance planning reduces the overall maintenance cost, increases machine life, and results in optimized life cycle costs. Several techniques have been used in the past to predict reliability, and there’s always been scope for improvement of the same. Researchers are finding new methods for better analysis of faults and reliability from traditional statistical methods to applying artificial intelligence. With the advancement of Industry 4.0, the mining industry is steadily moving towards the predictive maintenance approach to correct potential faults and increase equipment reliability. This paper attempts to provide a comprehensive review of different statistical techniques that have been applied for reliability and fault prediction from both theoretical aspects and industrial applications. Further, the advantages and limitations of the algorithm are discussed, and the efficiency of new ML methods are compared to the traditional methods used.

Funder

North American Construction Group

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Reference132 articles.

1. Mining Equipment Reliability, Maintainability, and Safety;Dhillon,2008

2. Reliability and Maintainability in Operations Management;Carlo,2013

3. Reliability of Systems;Mencik,2016

4. Reliability analysis of hydraulic systems of LHD machines using the power law process model

5. The Importance of Efficient Mining Equipment https://industrytoday.com/importance-efficient-mining-equipment/

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3