Computational Study on Effect of Obstacles in Pulse Detonation Engine

Author:

Tripathi Saurabh,Murari Pandey Krishna,Randive Pitambar

Abstract

Deflagration to Detonation transition is an important factor in the operation of pulse detonation engine which is basically working on the constant volume cycle. Insertion of obstacles decreases the DDT length. Hydrogen and the oxygen-enriched air was used as fuel and oxidizer respectively. The Purge gas is not required used. K-ԑ turbulence model is being used for the simulation and for combustion species transport model is being used. Effect of blockage ratio and obstacle spacing is also discussed. A blockage ratio of 0.5 is considered for the Shchelkin spiral. Temperature profile, flame propagation velocity and average peak pressure variation are discussed. Two-dimensional geometry and Shchelkin shape of obstacles are being considered. The comparison is done between straight tube and tube with obstacles. Numerical simulation is done and the results are being compared with those obtained through experimental investigation.  

Publisher

Science Publishing Corporation

Subject

Hardware and Architecture,General Engineering,General Chemical Engineering,Environmental Engineering,Computer Science (miscellaneous),Biotechnology

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3