A novel configuration capable of enhancing flame acceleration and detonation

Author:

Li TaoORCID,Li Xing,Xu Baopeng

Abstract

This study proposes a novel design concept that leverages the geometric effects of channels with varying diameters and bends to boost flame acceleration and detonation in microchannels. A quasi-direct numerical simulation with detailed chemical kinetics is used to evaluate the processes of flame acceleration and detonation. A comparative study on the impact of equidistant spiral and converging spiral shapes of detonation channels on flame acceleration is conducted and discussed. The results indicate that in the low-speed and high-speed stages of flame propagation, Fermat's spiral channel exhibits a more significant promoting effect on flame acceleration compared to the Archimedes spiral channel. Fermat's spiral channel has significant advantages in terms of combustion efficiency and can save about 30% of fuel during the detonation process. This study helps to further reduce the scale of the detonation system.

Funder

National Natural Science Foundation of China

Publisher

AIP Publishing

Reference29 articles.

1. Influence of tube roughness on the formation and detonation propagation in gas;J. Exp. Theor. Phys.,1940

2. Experimental investigations on DDT enhancements by shchelkin spirals in a PDE,2006

3. Computational study on effect of obstacles in pulse detonation engine;Int. J. Eng. Technol.,2018

4. On the mechanism of influence of obstacles on the flame propagation;Arch. Combust.,1981

5. Flame acceleration and DDT in channels with obstacles: Effect of obstacle spacing;Combust. Flame,2008

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3