Development of Lactic acid Microorganisms during Fermentation of Substrate with an Increased Concentration of Carbohydrates

Author:

Kondratenko Vladimir1,Posokina Natalia1,Kolokolova Anastasiay1,Zakharova Anna1

Affiliation:

1. All-Russian Research Institute of Canning Technology

Abstract

Introduction. Creating favorable conditions for the development of lactic acid microorganisms is one of the main factors in obtaining high-quality fermented products. The cycle of their life directly depends on the amount and composition of carbohydrates in plant tissue. Since a significant part of carbohydrates is consumed at the initial stage of fermentation process, additional fortification is needed. The research objective was to study the development rate of lactic acid microorganisms during the fermentation of plant substrate with a modified carbohydrate composition. Study objects and methods. The research featured model medium based on white cabbage of the Parus variety. The medium was fermented with different strains of lactic acid microorganisms: at the first stage of fermentation – Leuconostoc mesenteroides, at the second stage – Lactobacillus casei VKM 536, Lactobacillus plantarum VKM B-578, Lactobacillus brevis VKM B-1309, and their paired consortia. The initial plant material was subjected to grinding and removal of native microflora for the development of target lactic acid microorganisms, then inoculated with L. mesenteroides. The target lactic acid microorganisms were introduced after the first stage of fermentation with simultaneous adjustment of the carbohydrate composition. Results and discussion. The technology included modes of controlled two-stage microbial transformation of plant raw materials using modification of the carbohydrate composition of the substrate. A number of experiments made it possible to select the optimal composition of the consortium and establish the optimal fermentation time at the main stage of microbial processing. When the plant substrate was fermented by the consortium of L. casei + L. plantarum with an increased carbohydrate component, the decrease in the concentration was quite small: after 5–30 days, the decrease in the concentration of microorganisms did not exceed one order of magnitude, which was insignificant at an initial concentration of eight orders of magnitude. In other consortia, the decrease in the concentration of microorganisms was more pronounced. Conclusion. The fortification of the vegetable substrate with carbohydrates made it possible to maintain the concentration of lactic acid microorganisms at a level comparable to the concentration at the time of inoculation. The concentrations of microorganisms varied slightly in both monocultures and their paired consortia during the entire main fermentation stage of the model medium with a modified carbohydrate component. By the end of the main fermentation stage, the concentration of microorganisms did not fall below 107 CFU/g. Therefore, the resulting system “microflora – substrate” proved to have probiotic properties. The study can be used to develop new technological modes of controlled step-by-step fermentation of plant raw materials in order to improve the quality indicators of the final product.

Publisher

Kemerovo State University

Subject

Industrial and Manufacturing Engineering,Economics, Econometrics and Finance (miscellaneous),Food Science

Reference20 articles.

1. Spontaneously fermented traditional beverages as a source of bioactive compounds: an overview / R. B. Cuvas-Limon [et al.] // Critical Reviews in Food Science and Nutrition. 2020. P. 1–23. https://doi.org/10.1080/10408398.2020.1791050., Cuvas-Limon RB, Nobre C, Cruz M, Rodriguez-Jasso RM, Ruiz HA, Loredo-Trevino A, et al. Spontaneously fermented traditional beverages as a source of bioactive compounds: an overview. Critical Reviews in Food Science and Nutrition. 2020;1–23. https://doi.org/10.1080/10408398.2020.1791050.

2. Spontaneously fermented curly kale juice: Microbiological quality, nutritional composition, antioxidant, and antimicrobial properties / J. Szutowska [et al.] // Journal of Food Science. 2020. Vol. 85. № 4. P. 1248–1255. https://doi.org/10.1111/1750-3841.15080., Szutowska J, Rybicka I, Pawlak-Lemanska K, Gwiazdowska D. Spontaneously fermented curly kale juice: Microbiological quality, nutritional composition, antioxidant, and antimicrobial properties. Journal of Food Science. 2020;85(4):1248–1255. https://doi.org/10.1111/1750-3841.15080.

3. Microbial community dynamics and metabolome changes during spontaneous fermentation of northeast sauerkraut from different households / X. Yang [et al.] // Frontiers in Microbiology. 2020. Vol. 11. https://doi.org/10.3389/fmicb.2020.01878., Yang X, Hu W, Xiu Z, Jiang A, Yang X, Saren G, et al. Microbial community dynamics and metabolome changes during spontaneous fermentation of northeast sauerkraut from different households. Frontiers in Microbiology. 2020;11. https://doi.org/10.3389/fmicb.2020.01878.

4. Biologically active and health promoting food components of nuts, oilseeds, fruits, vegetables, cereals, and legumes / T. G. Albuquerque [et al.] // Chemical Analysis of Food. Techniques and Applications / editor Y. Pico. Academic Press, 2020. P. 609–656. https://doi.org/10.1016/b978-0-12-813266-1.00014-0., Albuquerque TG, Nunes MA, Bessada SMF, Costa HS, Oliveira MBPP. Biologically active and health promoting food components of nuts, oilseeds, fruits, vegetables, cereals, and legumes. In: Pico Y, editor. Chemical Analysis of Food. Techniques and Applications. Academic Press; 2020. pp. 609–656. https://doi.org/10.1016/b978-0-12-813266-1.00014-0.

5. Szutowska J. Functional properties of lactic acid bacteria in fermented fruit and vegetable juices: a systematic literature review // European Food Research and Technology. 2020. Vol. 246. № 3. P. 357–372. https://doi.org/10.1007/s00217-019-03425-7., Szutowska J. Functional properties of lactic acid bacteria in fermented fruit and vegetable juices: a systematic literature review. European Food Research and Technology. 2020;246(3):357–372. https://doi.org/10.1007/s00217-019-03425-7.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3