Affiliation:
1. Belarusian State University
2. Research Institute of Baby Food
3. All-Russian Scientific Research Institute of Canning Technology
Abstract
Introduction. Mare’s milk is a valuable food product with medicinal properties. In combination with cow’s milk, it is used to create new functional foods. Efficient identification of mare’s milk, cow’s milk, and their mixes prevent falsification.
Study objects and methods. The protein composition of mare’s and cow’s milk whey and their mixes was analyzed by high performance liquid chromatography (HPLC) using an Agilent 1200 chromatograph with an Agilent G1315C diode array detector. Separation was performed using a column Machinery Nagel C 18 4.6×250, 5 μm.
Results and discussion. The standard HPLC method was optimized to analyse whey proteins in the milk samples. The separation of whey proteins included the following optimal parameters: chromatography time = 60 min, linear gradient of acetonitrile concentration = 0–50%, and sample volume for injection = 20 μl. Alpha-lactoalbumin proved to be the protein of mare’s milk and cow’s milk. The retention time of mare’s α-lactoalbumin was 45.16 min, and that of cow’s milk – 40.09 min. The differences in the retention time of α-lactoalbumin were associated with the presence of 33 amino acid substitutions in the primary structure of both milks. The areas of α-lactoalbumin peaks were used to calculate the amount of cow’s milk added to mare’s milk and the related percentage.
Conclusion. A HPLC analysis of whey proteins made it possible to determine up to 50 mL of added cow’s milk in 1 liter of mare’s milk.
Publisher
Kemerovo State University
Subject
Industrial and Manufacturing Engineering,Economics, Econometrics and Finance (miscellaneous),Food Science
Reference36 articles.
1. Lv J.-P., Wang L.-M. Bioactive components in kefir and koumiss // Bioactive components in milk and dairy products / Y. W. Park editor. Wiley-Blackwell, 2009. P. 251–262. https://doi.org/10.1002/9780813821504.ch10., Lv J-P, Wang L-M. Bioactive components in kefir and koumiss. In: Park YW, editor. Bioactive components in milk and dairy products. Wiley-Blackwell; 2009. pp. 251–262. https://doi.org/10.1002/9780813821504.ch10.
2. Mare’s milk: composition and protein fraction in comparison with different milk species / K. Potocnik [et al.] // Mljekarstvo. 2011. Vol. 61. № 2. P. 107–113., Potocnik K, Gantner V, Kuterovac K, Cividini A. Mare’s milk: composition and protein fraction in comparison with different milk species. Mljekarstvo. 2011;61(2):107–113.
3. Дайырова С. М. Изучение жирно-кислотного состава сухого кобыльего молока // Фармация Казахстана. 2016. Т. 181. № 6. С. 19–21., Daiyrova SM. Evaluation of the chemical composition of dry mare’’s milk. Farmatsiya Kazakhstana [Pharmacy of Kazakhstan]. 2016;181(6):19–21. (In Russ.).
4. Якунин А. В., Синявский Ю. А., Ибраимов Ы. С. Оценка пищевой ценности кобыльего молока и кисломолочных продуктов на его основе и возможности их использования в детском питании // Вопросы современной педиатрии. 2017. Т. 16. № 3. С. 235–240. https://doi.org/10.15690/vsp.v16i3.1734., Yakunin AV, Sinyavskiy YuA, Ibraimov YS. Assessment of the nutritional value of mare’’s milk and fermented mare’’s milk products and the possibility of their use in baby food. Current Pediatrics. 2017;16(3):235–240. (In Russ.). https://doi.org/10.15690/vsp.v16i3.1734.
5. Thoroughbred mare’s milk exhibits a unique and diverse free oligosaccharide profile / S. Karav [et al.] // FEBS Open Bio. 2018. Vol. 8. № 8. P. 1219–1229. https://doi.org/10.1002/2211-5463.12460., Karav S, Salcedo J, Frese SA, Barile D. Thoroughbred mare’s milk exhibits a unique and diverse free oligosaccharide profile. FEBS Open Bio. 2018;8(8):1219–1229. https://doi.org/10.1002/2211-5463.12460.
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献