Microwave-Convective Processing of Whipped Bread: Mathematical Modeling

Author:

Khvostov Anatoly12ORCID,Magomedov Gazibeg2,Ryazhskikh Victor13ORCID,Zhuravlev Aleksey3ORCID,Magomedov Magomed2ORCID,Plotnikova Inessa2ORCID,Taratukhin Aleksei2ORCID

Affiliation:

1. Voronezh State Technical University

2. Voronezh State University of Engineering Technologies

3. Military Educational and Scientific Centre of the Air Force N.E. Zhukovsky and Yu.A. Gagarin Air Force Academy of the Ministry of Defence of the Russian Federation

Abstract

Whipped yeast-free bakery products require effective energy supply to dough in order to optimize energy consumption, baking time, and quality. This article introduces a verified mathematical model of microwave and convective baking for whipped bread based on heat and mass exchange equations. A full-scale experiment to verify the calculations involved dough samples with a humidity of 56 ± 1%. The samples underwent microwave and convective processing until the temperature in the crumb center reached 98 ± 1°C. The mathematical model was formalized as energy and mass conservation equations, which made it possible to consider baking as a non-stationary process of heat and mass transfer of moisture in an isotropic incompressible continuous medium in the diffusion approximation. The equation took into account the unstable phase transition boundary. The practical verification showed the mean error for microwave baking as 14.5% in temperature and 18.2% in moisture content. For convective baking, the results included 12.6% in temperature and 9.7% in moisture content. The mathematical model proved adequate to the real processes of heat and mass transfer. The error in calculating the temperature and moisture content fields was sufficient tooptimize the process. The physical and mathematical model of the baking process made it possible to evaluate the effect of technological variables on the temperature and moisture concentration fields in the dough samples. The mathematical model and the computational experiment can be used to identify static and dynamic characteristics of baking as an object of automatic control, i.e., to identify optimal control channels and actions, as well as to adjust the automatic control system to specific quality indicators.

Publisher

Kemerovo State University

Reference20 articles.

1. Rudnev SD, Shevchenko TV, Ustinova YuV, Kryuk RV, Ivanov VV, Chistyakov AM. Technology and theory of mechanically activated water in bakery industry. Food Processing: Techniques and Technology. 2021;51(4):768–778. (In Russ.). https://doi.org/10.21603/2074-9414-2021-4-768-778, Rudnev SD, Shevchenko TV, Ustinova YuV, Kryuk RV, Ivanov VV, Chistyakov AM. Technology and theory of mechanically activated water in bakery industry. Food Processing: Techniques and Technology. 2021;51(4):768–778. (In Russ.). https://doi.org/10.21603/2074-9414-2021-4-768-778

2. Kulishov BA, Novosyolov AG, Ivashchenko SYu, Gusarov NE. Electric contact heating in baking: A review. Polzunovsky Vestnik. 2019;(1):106–113. (In Russ.). https://doi.org/10.25712/ASTU.2072-8921.2019.01.020, Kulishov BA, Novosyolov AG, Ivashchenko SYu, Gusarov NE. Electric contact heating in baking: A review. Polzunovsky Vestnik. 2019;(1):106–113. (In Russ.). https://doi.org/10.25712/ASTU.2072-8921.2019.01.020

3. Маклюков В. И. Анализ методов моделирования процесса выпечки хлеба // Хлебопродукты. 2021. № 7. С. 26–32. https://elibrary.ru/IQUUCR, Maklyukov VI. Analysis of methods for modeling the bread baking process. Bread Products. 2021;(7):26–32. (In Russ.). https://elibrary.ru/IQUUCR

4. Magomedov GO, Khvostov AА, Zhuravlev AА, Magomedov MG, Taratukhin AS, Plotnikova IV. Formation of whipped yeast-free bread crumb with intensive microwave convective baking. Food Processing: Techniques and Technology. 2022;52(3):426–438. (In Russ.). https://doi.org/10.21603/2074-9414-2022-3-2375, Magomedov GO, Khvostov AA, Zhuravlev AA, Magomedov MG, Taratukhin AS, Plotnikova IV. Formation of whipped yeast-free bread crumb with intensive microwave convective baking. Food Processing: Techniques and Technology. 2022;52(3):426–438. (In Russ.). https://doi.org/10.21603/2074-9414-2022-3-2375

5. Purlis E, Cevoli C, Fabbri A. Modeling volume change and deformation in food products/processes: An overview. Foods. 2021;10(4). https://doi.org/10.3390/foods10040778, Purlis E, Cevoli C, Fabbri A. Modeling volume change and deformation in food products/processes: An overview. Foods. 2021;10(4). https://doi.org/10.3390/foods10040778

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3