Affiliation:
1. Siberian Federal Scientific Center of Agro-BioTechnologies of t he Russian Academy of Sciences
2. Siberian Federal Scientific Center of Agro-BioTechnologies of the Russian Academy of Sciences
Abstract
Berries are a source of biologically active substances in human diet. Gooseberries have attractive sensory properties and high nutritional value. However, modern science knows little about micromycetic contamination of gooseberry. The research objective was to define the mycobiota composition of Ribes uva-crispa L. varieties during storage.
The study featured the mycobiota of gooseberry varieties Senator and Rozoviy 2. The berries were harvested on the test field of the Siberian Federal Scientific Center of Agro-BioTechnologies of the Russian Academy of Sciences. They were stored for 18 days at 18 ± 2 and 4 ± 2°C and a relative humidity of 90–95%.
The authors used standard research methods to identify the mycobiota and attribute them to nine genera by morphological structure: Aspergillus, Mucor, Penicillium, Rhizopus, Alternaria, Aureobasidium, Cladosporium, Cryptococcus, and anaerobic yeast. The frequency of occurrence varied from 20 to 100%. Micromycetes of the genus Fusarium were present only in the Senator sample, which also demonstrated a 100% occurrence of Penicillium, Alternaria, Aspergillus, and Cladosporium. In the sample of Rozoviy 2, Penicillium and Cladosporium occurred in 80%. The Senator sample was twice as low in micromycetes as the Rozoviy 2 berries: 558 vs. 945, respectively. The Senator berries grew in micromycetes due to the Cladosporium fungi while Rozoviy 2 owed its micromycetic increase to Penicillium. Both varieties showed no signs of ascomycetes known as a powdery mildew agent. During storage, the growth of yeast and yeast-like fungi depended on the variety of berries while the growth of mycelial fungi depended on the variety and storage temperature.
The data obtained expand the scope of scientific knowledge about the generic composition of gooseberry mycobiota, which may help to select correct anti-spoilage measures.
Publisher
Kemerovo State University
Reference41 articles.
1. Akimov MYu. New breeding and technological evaluation criteria for fruit and berry products for the healthy and dietary food industry. Problems of Nutrition. 2020;89(4):244–254. (In Russ.). https://doi.org/10.24411/0042-8833-2020-10057; https://www.elibrary.ru/ZDWZMY, Akimov MYu. New breeding and technological evaluation criteria for fruit and berry products for the healthy and dietary food industry. Problems of Nutrition. 2020;89(4):244–254. (In Russ.). https://doi.org/10.24411/0042-8833-2020-10057; https://www.elibrary.ru/ZDWZMY
2. Newman G. Fruit and vegetables: Prevention and cure? In: Short E, editor. A prescription for healthy living. A guide to lifestyle medicine. Academic Press; 2021. pp. 243–253. https://doi.org/10.1016/B978-0-12-821573-9.00022-9, Newman G. Fruit and vegetables: Prevention and cure? In: Short E, editor. A prescription for healthy living. A guide to lifestyle medicine. Academic Press; 2021. pp. 243–253. https://doi.org/10.1016/B978-0-12-821573-9.00022-9
3. Yahia EM, Fonseca JM, Kitinoja L. Postharvest losses and waste. In: Yahia EM, editor. Postharvest technology of perishable horticultural commodities. Woodhead Publishing; 2019. pp. 43–69. https://doi.org/10.1016/B978-0-12-813276-0.00002-X, Yahia EM, Fonseca JM, Kitinoja L. Postharvest losses and waste. In: Yahia EM, editor. Postharvest technology of perishable horticultural commodities. Woodhead Publishing; 2019. pp. 43–69. https://doi.org/10.1016/B978-0-12-813276-0.00002-X
4. Sedova IB, Chalyy ZA, Efimochkina NR, Sokolov IE, Koltsov VA, Zhidekhina TV, et al. Mycotoxin contamination of fresh berries and fruits marketed in the central region of Russia. Health Risk Analysis. 2022;(4):87–99. (In Russ.). https://doi.org/10.21668/health.risk/2022.4.08; https://www.elibrary.ru/TBZOVR, Sedova IB, Chalyy ZA, Efimochkina NR, Sokolov IE, Koltsov VA, Zhidekhina TV, et al. Mycotoxin contamination of fresh berries and fruits marketed in the central region of Russia. Health Risk Analysis. 2022;(4):87–99. (In Russ.). https://doi.org/10.21668/health.risk/2022.4.08; https://www.elibrary.ru/TBZOVR
5. Ngolong Ngea GL, Qian X, Yang Q, Dhanasekaran S, Ianiri G, Ballester A-R, et al. Securing fruit production: Opportunities from the elucidation of the molecular mechanisms of postharvest fungal infections. Comprehensive Reviews in Food Science and Food Safety. 2021;20(3):2508–2533. https://doi.org/10.1111/1541-4337.12729, Ngolong Ngea GL, Qian X, Yang Q, Dhanasekaran S, Ianiri G, Ballester A-R, et al. Securing fruit production: Opportunities from the elucidation of the molecular mechanisms of postharvest fungal infections. Comprehensive Reviews in Food Science and Food Safety. 2021;20(3):2508–2533. https://doi.org/10.1111/1541-4337.12729