Affiliation:
1. Qiqihar University
2. Kemerovo State University
3. Immanuel Kant Baltic Federal University
Abstract
Introduction. One of the urgent problems of medicine and biology is the use of plant objects as industrial producers of target metabolites in vitro. In vitro cells can be used as pharmaceutical preparations.
Study objects and methods. The present research featured medicinal plants that grow in the Siberian Federal district and are a popular source of medicinal raw materials. The physicochemical properties, e.g. total ash content in extracts, the content of heavy metals, the content of organic solvents in the extracts, and the mass loss upon drying was determined by standard methods. The antimicrobial properties of in vitro extracts were determined by the diffusion method and the method based on optical density measurement. The list of opportunistic and pathogenic test strains included the following microorganisms: E. coli ATCC 25922, S. aureus ATCC 25923, P. vulgaris ATCC 63, P. aeruginosa ATCC 9027, and C. albicans EMTC 34. The number of viable cancer cells was determined using the MTT colorimetric method.
Results and discussion. The paper describes the physicochemical properties, safety indicators, antioxidant activity, antimicrobial activity, and antitumor properties of extracts of a complex of biologically active substances obtained in vitro from the dried biomass of callus and suspension cell cultures and root cultures. The root extracts proved to have the maximum antimicrobial and cytotoxic properties. They could reduce the survival rate of cancer cells to 24.8–36.8 %.
Conclusion. The research featured extracts obtained from the dried biomass of callus and suspension cell cultures and root cultures in vitro of safflower leuzea (Leuzea carthamoides L.), Rhodiola rosea (Rhodiola rosea L.), various sorts of skullcap (Scutellaria baicalensis L., Scutellaria andrachnoides L., Scutellaria galericulata L.), Potentilla alba (Potentilla alba L.) and ginseng (Panax L.). The results showed that the extracts can be used for the production of pharmaceuticals and biologically active additives with antitumor, antimicrobial, and antioxidant properties.
Publisher
Kemerovo State University
Subject
Industrial and Manufacturing Engineering,Economics, Econometrics and Finance (miscellaneous),Food Science
Reference27 articles.
1. Plant cell culture as emerging technology for production of active cosmetic ingredients / V. Georgiev, A. Slavov, I. Vasileva [et al.] // Engineering in Life Sciences. – 2018. – Vol. 18, № 11. – P. 779–798. DOI: https://doi.org/10.1002/elsc.201800066., Georgiev V, Slavov A, Vasileva I, Pavlov A. Plant cell culture as emerging technology for production of active cosmetic ingredients. Engineering in Life Sciences. 2018;18(11):779–798. DOI: https://doi.org/10.1002/elsc.201800066.
2. Shikonin production by callus culture of onosma bulbotrichom as active pharmaceutical ingredient / F. Bagheri, R. Tahvilian, N. Karimi [et al.] // Iranian Journal of Pharmaceutical Research. – 2018. – Vol. 17, № 2. – P. 495–504., Bagheri F, Tahvilian R, Karimi N, Chalabi M, Azami M. Shikonin production by callus culture of onosma bulbotrichom as active pharmaceutical ingredient. Iranian Journal of Pharmaceutical Research. 2018;17(2):495–504.
3. Espinosa-Leal, C. A. In vitro plant tissue culture: means for production of biological active compounds / C. A. Espinosa-Leal, C. A. Puente-Garza, S. García-Lara // Planta. – 2018. – Vol. 248, № 1. DOI: https://doi.org/10.1007/s00425-018-2910-1., Espinosa-Leal CA, Puente-Garza CA, García-Lara S. In vitro plant tissue culture: means for production of biological active compounds. Planta. 2018;248(1). DOI: https://doi.org/10.1007/s00425-018-2910-1.
4. High production of bioactive depsides in shoot and callus cultures of Aronia arbutifolia and Aronia × prunifolia / A. Szopa, P. Kubica, A. Snoch [et al.] // Acta Physiologiae Plantarum. – 2018. – Vol. 40, № 3. DOI: https://doi.org/10.1007/s11738-018-2623-x., Szopa A, Kubica P, Snoch A, Ekiert H. High production of bioactive depsides in shoot and callus cultures of Aronia arbutifolia and Aronia × prunifolia. Acta Physiologiae Plantarum. 2018;40(3). DOI: https://doi.org/10.1007/s11738-018-2623-x.
5. Effect of plant growth regulators on coloured callus formation and accumulation of azadirachtin, an essential biopesticide in Azadirachta indica / S. Ashokhan, R. Othman, M. H. A. Rahim [et al.] // Plants. – 2020. – Vol. 9, № 3. DOI: https://doi.org/10.3390/plants9030352., Ashokhan S, Othman R, Rahim MHA, Karsani SA, Yaacob JS. Effect of plant growth regulators on coloured callus formation and accumulation of azadirachtin, an essential biopesticide in Azadirachta indica. Plants. 2020;9(3). DOI: https://doi.org/10.3390/plants9030352.
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献