Enzymatic Hydrolysis of Soy Protein

Author:

Sokolov Dmitry1ORCID,Bolkhonov Bulat1ORCID,Zhamsaranova Sesegma1ORCID,Lebedeva Svetlana1ORCID,Bazhenova Bayana1ORCID

Affiliation:

1. East Siberia State University of Technology and Management

Abstract

Soy continues to be one of the top sources of vegetable protein. Structurally modified soy proteins and processed products are used as part of functional foods. Enzymatic hydrolysates of food proteins have different degrees of hydrolysis and functional profiles, hence the constant search for the optimal hydrolysis parameters. The present research objective was to design a two-stage enzymatic conversion process of soy protein using mathematical methods, as well as to evaluate the antioxidant properties of the hydrolysate in laboratory conditions. Soy protein isolate was tested to define the maximal value of the hydrolysis degree. It underwent a series of two-factor experiments in the presence of pepsin and trypsin. The study focused on the hydrolysis time and the enzyme-substrate ratio. The results were optimized using the response surface methodology in MathCad 15. The total antioxidant activity of the hydrolysate during hydrolysis was determined on a Tsvet-Yauza-01-AA chromatograph using the amperometric method. For the pepsin test, the processing time was 7 h and the enzyme-to-substrate ratio was 1:22. For the trypsin test, the time was 7 h and the ratio was 1:30. The mathematical modeling revealed the following optimal parameters. The first stage involved hydrolysis with pepsin for 5 h at an enzyme-to-substrate ratio of 1:20; the second stage involved hydrolysis with trypsin for 3 h at an enzyme-to-substrate ratio of 1:19. The resulting hydrolysate demonstrated 88% hydrolysis. The highest summary antioxidant activity was registered after 5 h of hydrolysis and amounted to about 250 mg/100 mL. The resulting enzymatic hydrolysate of soy protein can be used as a food component or an antioxidant feed additive. The obtained peptides can immobilize essential microelements, e.g., Zn, I, and Se, as well as produce polyvalent complexes. Further studies will be aimed at the residual antigenicity of the hydrolysate and other functional indicators.

Publisher

Kemerovo State University

Subject

Industrial and Manufacturing Engineering,Economics, Econometrics and Finance (miscellaneous),Food Science

Reference37 articles.

1. Fahed G, Aoun L, Zerdan MB, Allam S, Zerdan MB, Bouferraa Y, et al. Metabolic syndrome: Updates on pathophysiology and management in 2021. International Journal of Molecular Sciences. 2022;23(2). https://doi.org/10.3390/ijms23020786, Fahed G, Aoun L, Zerdan MB, Allam S, Zerdan MB, Bouferraa Y, et al. Metabolic syndrome: Updates on pathophysiology and management in 2021. International Journal of Molecular Sciences. 2022;23(2). https://doi.org/10.3390/ijms23020786

2. Castro-Barquero S, Ruiz-León AM, Sierra-Pérez M, Estruch R, Casas R. Dietary strategies for metabolic syndrome: A comprehensive review. Nutrients. 2020;12(10). https://doi.org/10.3390/nu12102983, Castro-Barquero S, Ruiz-León AM, Sierra-Pérez M, Estruch R, Casas R. Dietary strategies for metabolic syndrome: A comprehensive review. Nutrients. 2020;12(10). https://doi.org/10.3390/nu12102983

3. Vorobyeva VM, Vorobyeva IS, Kochetkova AA, Mazo VK, Zorin SN, Sharafetdinov KhKh. Specialised hypocholesteremic foods: Ingredients, technology, effects. Foods and Raw Materials. 2020;8(1):20–29. https://doi.org/10.21603/2308-4057-2020-1-20-29, Vorobyeva VM, Vorobyeva IS, Kochetkova AA, Mazo VK, Zorin SN, Sharafetdinov KhKh. Specialised hypocholesteremic foods: Ingredients, technology, effects. Foods and Raw Materials. 2020;8(1):20–29. https://doi.org/10.21603/2308-4057-2020-1-20-29

4. Sadovoy VV, Shchedrina TV, Trubina IA, Morgunova AV, Franko EP. Cooked sausage enriched with essential nutrients for the gastrointestinal diet. Foods and Raw Materials. 2021;9(2):345–353. https://doi.org/10.21603/2308-4057-2021-2-345-353., Sadovoy VV, Shchedrina TV, Trubina IA, Morgunova AV, Franko EP. Cooked sausage enriched with essential nutrients for the gastrointestinal diet. Foods and Raw Materials. 2021;9(2):345–353. https://doi.org/10.21603/2308-4057-2021-2-345-353.

5. Sui X, Zhang T, Jiang L. Soy protein: Molecular structure revisited and recent advances in processing technologies. Annual Review of Food Science and Technology. 2021;12:119–147. https://doi.org/10.1146/annurev-food-062220-104405, Sui X, Zhang T, Jiang L. Soy protein: Molecular structure revisited and recent advances in processing technologies. Annual Review of Food Science and Technology. 2021;12:119–147. https://doi.org/10.1146/annurev-food-062220-104405

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3