Affiliation:
1. Kemerovo State University
Abstract
Hydroponics is a method of soilless cultivation of plants. It shortens the vegetation period, reduces the risk of disease and insect infestation, and provides a year-round growing cycle. Hydroponics depends on efficient water management. It is associated with a complex design, operation, and maintenance. Neural networks can control complex technological processes in agriculture. The research objective was to use a neural network to increase the efficiency of a home hydroponics system.
The study involved a nutrient bed hydroponics setup with ten Lactuca sativa plants. Sensors collected information about the temperature and humidity of air, illumination, and the temperature of the leaf surface. Data processing, neural network training, and microcontroller programming relied on Python 3, PyTorch, and MicroPython.
The four-layer perceptron, which is a popular control mechanism, turned out to be the most effective neural network architecture. Fewer layers resulted in a high error rate (≥ 5%). When the number of layers was > 4, the error level remained at that of the four-layer experiment (0.2%). Further practical tests showed an increase in energy efficiency by 32.3%, compared to the classical control algorithm at close values of plant transpiration.
Neural net technology could be integrated into energy-saving residential premises and smart home systems in order to increase the self-sufficiency of hydroponics installations.
Publisher
Kemerovo State University
Subject
Industrial and Manufacturing Engineering,Economics, Econometrics and Finance (miscellaneous),Food Science
Reference26 articles.
1. World population prospects: Population division department of economic and social affairs. United Nation; 2019. 46 p., World population prospects: Population division department of economic and social affairs. United Nation; 2019. 46 p.
2. The state of food security and nutrition in the world. Building climate resilience for food security and nutrition. Rome: Food and Agriculture Organization; 2018. 202 p., The state of food security and nutrition in the world. Building climate resilience for food security and nutrition. Rome: Food and Agriculture Organization; 2018. 202 p.
3. Alexandratos N, Bruinsma J. World agriculture towards 2030/2050: the 2012 revision. Rome: Food and Agriculture Organization; 2012. 155 p. https://doi.org/10.22004/ag.econ.288998, Alexandratos N, Bruinsma J. World agriculture towards 2030/2050: the 2012 revision. Rome: Food and Agriculture Organization; 2012. 155 p. https://doi.org/10.22004/ag.econ.288998
4. Bren d’Amour C, Reitsma F, Baiocchi G, Barthel S, Güneralp B, Erb K-H, et al. Future urban land expansion and implications for global croplands. Proceedings of the National Academy of Sciences. 2016;114(34):8939–8944. https://doi.org/10.1073/pnas.1606036114, Bren d’Amour C, Reitsma F, Baiocchi G, Barthel S, Güneralp B, Erb K-H, et al. Future urban land expansion and implications for global croplands. Proceedings of the National Academy of Sciences. 2016;114(34):8939–8944. https://doi.org/10.1073/pnas.1606036114
5. Kaledin AP, Stepanova MV. Bioaccumulation of trace elements in vegetables grown in various anthropogenic conditions. Foods and Raw Materials. 2023;11(1):10–16. https://doi.org/10.21603/2308-4057-2023-1-551, Kaledin AP, Stepanova MV. Bioaccumulation of trace elements in vegetables grown in various anthropogenic conditions. Foods and Raw Materials. 2023;11(1):10–16. https://doi.org/10.21603/2308-4057-2023-1-551
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献