Bioaccumulation of trace elements in vegetables grown in various anthropogenic conditions

Author:

Kaledin Anatoly1ORCID,Stepanova Marina2ORCID

Affiliation:

1. Russian State Agrarian University – Moscow Timiryazev Agricultural Academy

2. Moscow State University of Food Production

Abstract

Hazardous compounds accumulate in plants and animals as a result of anthropogenic impact. Trace elements, such as heavy metals, move up in the system of snow – soil – water – plant – animal. When contaminants accumulate in plants that serve as animal feed, they eventually accumulate in the animals that consume the feed because heavy metals usually enter living organisms via digestive tract, i.e., with food. In 2003–2021, we studied fodder plants grown and harvested by urban zoological organizations, e.g., zoos, nature corners, etc. This research covered the Central Federal District represented by the cities of Moscow, Ivanovo, Yaroslavl, and Uglich. The empirical part of the study relied on a combination of modern ecological, biochemical, and statistical methods. A KVANT-2AT atomic absorption spectrometer was used to define the trace elements and their quantities. Broccoli proved to be the most resistant feed vegetable to all the toxic elements in this study. Kohlrabi, sweet potato, and dill had low content of lead and cadmium, while garlic was highly resistant to cadmium and arsenic. Spinach, fennel, potatoes, beets, and bell peppers, which were used as fodder in metropolis conditions, exceeded the maximal permissible concentration of heavy metals. The samples obtained from the Moscow Zoo contained by 1.98 times more zinc, by 1.06 times more copper, and by 89.47 times more lead than average. The samples from Ivanovo accumulated the greatest extent of iron, which exceeded the average level by 3.26 times. The vegetables from Uglich and Ivanovo had the lowest concentration of zinc, which was by 67.86 and 62.70% below the average, respectively. The samples from Yaroslavl contained by 33.08% less copper. In 2003–2021, feed vegetables grown in the Central Federal District had an average increase in zinc, copper, and lead by 1.13, 1.45, and 2.80 times, respectively. The level of iron stayed almost the same throughout 2018–2021, while that of arsenic gradually decreased in concentration. The accumulation level of zinc, copper, iron, and arsenic in feed vegetables appeared to depend on the concentration of their water-soluble metal forms in the soil. Therefore, forage agriculture in urban areas requires constant chemical and toxicological tests to prevent contaminated feed from entering animal diet.

Publisher

Kemerovo State University

Subject

Food Science

Reference23 articles.

1. Oganesyants LA, Sevostianova EM, Kuzmina EI, Ganin MYu, Chebykin EP, Suturin AN. Isotopic and chemical composition of the deep water of Lake Baikal. Food Processing: Techniques and Technology. 2021;51(4):723–732. (In Russ.). https://doi.org/10.21603/2074-9414-2021-4-723-732, Oganesyants LA, Sevostianova EM, Kuzmina EI, Ganin MYu, Chebykin EP, Suturin AN. Isotopic and chemical composition of the deep water of Lake Baikal. Food Processing: Techniques and Technology. 2021;51(4):723–732. (In Russ.). https://doi.org/10.21603/2074-9414-2021-4-723-732

2. Senchenko M, Stepanova M, Pozdnyakova V, Olenchuk E. Migration of microelements and heavy metals in the system “soil – plant – plant-based products”. Journal of Microbiology, Biotechnology and Food Sciences. 2021;10(6)., Senchenko M, Stepanova M, Pozdnyakova V, Olenchuk E. Migration of microelements and heavy metals in the system “soil – plant – plant-based products”. Journal of Microbiology, Biotechnology and Food Sciences. 2021;10(6).

3. Stepanova MV, Ostapenko VA, Kaledin AP. The content of heavy metals and arsenic in agricultural soils. Izvestia Orenburg State Agrarian University. 2020;86(6):15–21. (In Russ.). https://doi.org/10.37670/2073-0853-2020-86-6-15-21, Stepanova MV, Ostapenko VA, Kaledin AP. The content of heavy metals and arsenic in agricultural soils. Izvestia Orenburg State Agrarian University. 2020;86(6):15–21. (In Russ.). https://doi.org/10.37670/2073-0853-2020-86-6-15-21

4. Różyło K, Świeca M, Gawlik-Dziki U, Andruszczak S, Kwiecińska-Poppe E, Kraska P. Phytochemical properties and heavy metal accumulation in wheat grain after three years’ fertilization with biogas digestate and mineral waste. Agricultural and Food Science. 2017;26(3):148–159. https://doi.org/10.23986/afsci.63156, Różyło K, Świeca M, Gawlik-Dziki U, Andruszczak S, Kwiecińska-Poppe E, Kraska P. Phytochemical properties and heavy metal accumulation in wheat grain after three years’ fertilization with biogas digestate and mineral waste. Agricultural and Food Science. 2017;26(3):148–159. https://doi.org/10.23986/afsci.63156

5. Baghaie AH, Fereydoni M. The potential risk of heavy metals on human health due to the daily consumption of vegetables. Environmental Health Engineering and Management Journal. 2019;6(1):11–16. https://doi.org/10.15171/EHEM.2019.02, Baghaie AH, Fereydoni M. The potential risk of heavy metals on human health due to the daily consumption of vegetables. Environmental Health Engineering and Management Journal. 2019;6(1):11–16. https://doi.org/10.15171/EHEM.2019.02

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3