Removing Excess Iron from Sewage and Natural Waters: Selecting Optimal Sorbent

Author:

Ivanova Ludmila1ORCID,Timoshchuk Irina1ORCID,Gorelkina Alena1ORCID,Mikhaylova Ekaterina1ORCID,Golubeva Nadezhda1ORCID,Neverov Evgeniy1ORCID,Utrobina Tamara1ORCID

Affiliation:

1. Kemerovo State University

Abstract

Natural waters and wastewaters often contain heavy metals, e.g., iron. Iron ore mining contaminates groundwater with iron up to 30 maximal permissible concentrations (MPC) as this element gets washed out from rock and soil. Adsorption is the most effective and economically feasible method of additional purification of natural and wastewater from iron. Its efficiency depends on the type of adsorbent. The research objective was to select the most efficient sorption material to eliminate water from iron, as well as to establish the adsorption patterns for different sorbents, thus creating sustainable and effective purification. The study featured carbonaceous sorbent of the SKD-515 grade, mineral sorption materials with aluminosilicate of the AC grade, and silicate-based sorbent of the ODM-2F grade. The porous structure was studied by porometry methods while the surface image was obtained using scanning electron microscopy. Other indicators included equilibrium, kinetics, and dynamics of iron adsorption by various sorbents. The Freundlich and Langmuir equations made it possible to calculate the key adsorption parameters. The Gibbs energy values were obtained from the Langmuir equation and equaled 11.93–20.66 kJ/mol, which indicated the physical nature of the adsorption process. Under static conditions, the sorbents demonstrated a high adsorption capacity with respect to iron, depending on the structure, and could be arranged as AC > SKD-515 > ODM-2F. In SKD-515, iron adsorption occurred in micropores; in AC and ODM-2F, it took place in mesopores. The kinetics of iron extraction showed that the adsorption process was limited by external mass transfer. The research provided a new understanding of iron adsorption by materials of various structures. The conclusions were supported by scanning electron microscopy images. Initial concentration, flow velocity, and loading layer height were studied in dynamics, i.e., during continuous operation of the adsorption column. The system proved extremely effective and reached 99.0% Fe3+ extraction under the following conditions: flow rate = 1 L/min, loading column height = 0.15 m, column diameter = 0.05 m, initial concentration = 0.5 mg/L (5 MPC). The column performance was tested at an initial concentration of iron ions of 50 MPC, which simulated the wastewater treatment at industrial enterprises. This comprehensive study of iron adsorption from wastewater proved the efficiency of the mineral sorption materials with aluminosilicate of AC grade.

Publisher

Kemerovo State University

Reference21 articles.

1. Калюкова Е. Н., Письменко В. Т., Иванская Н. Н. Адсорбция катионов марганца и железа природными сорбентами // Сорбционные и хроматографические процессы. 2010. Т. 10. № 2. С. 194–198. https://elibrary.ru/MUEQSJ, Kaljukova EN, Pismenko VT, Ivanskaya NN. Adsorption of manganese and iron cations by natural sorbents. Sorption and Chromatography Processes. 2010;10(2):194–198. (In Russ.). https://elibrary.ru/MUEQSJ

2. Bibanaeva SA, Skachkov VM. Sorption of heavy metals from aqueous solutions with synthetic zeolites. Physical and Chemical Aspects of the Study of Custers, Nanostructures and Nanomaterials. 2023;(15):924–929. (In Russ.). https://doi.org/10.26456/pcascnn/2023.15.924; https://elibrary.ru/SWCQJA, Bibanaeva SA, Skachkov VM. Sorption of heavy metals from aqueous solutions with synthetic zeolites. Physical and Chemical Aspects of the Study of Custers, Nanostructures and Nanomaterials. 2023;(15):924–929. (In Russ.). https://doi.org/10.26456/pcascnn/2023.15.924; https://elibrary.ru/SWCQJA

3. Полещук И. Н., Пинигина И. А., Созыкина Е. С. Извлечение ионов железа (III) из водных растворов модифицированными природными сорбентами // Современные наукоемкие технологии. 2019. № 3–2. С. 227–231. https://elibrary.ru/ZEKOVN, Poleshchuk IN, Pinigina IA, Sozykina ES. Extracting ions of iron (III) from aqueous solutions by natural sorbents modified. Modern High Technologies. 2019;(3–2):227–231. (In Russ.). https://elibrary.ru/ZEKOVN

4. Chakraborty R, Asthana A, Singh AK, Jain B, Susan ABH. Adsorption of heavy metal ions by various low-cost adsorbents: A review. International Journal of Environmental Analytical Chemistry. 2020;102(2):342–379. https://doi.org/10.1080/03067319.2020.1722811, Chakraborty R, Asthana A, Singh AK, Jain B, Susan ABH. Adsorption of heavy metal ions by various low-cost adsorbents: A review. International Journal of Environmental Analytical Chemistry. 2020;102(2):342–379. https://doi.org/10.1080/03067319.2020.1722811

5. Kochkarev PV, Koshurnikova MA, Sergeyev AA, Shiryaev VV. Trace elements in the meat and internal organs of the mountain hare (Lepus timidus L., 1758) in the North of the Krasnoyarsk region. Food Processing: Techniques and Technology. 2023;53(2):217–230. (In Russ.). https://doi.org/10.21603/2074-9414-2023-2-2436, Kochkarev PV, Koshurnikova MA, Sergeyev AA, Shiryaev VV. Trace elements in the meat and internal organs of the mountain hare (Lepus timidus L., 1758) in the North of the Krasnoyarsk region. Food Processing: Techniques and Technology. 2023;53(2):217–230. (In Russ.). https://doi.org/10.21603/2074-9414-2023-2-2436

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3