Affiliation:
1. Kemerovo State University
2. Moscow State University of Food Production
Abstract
Medicinal plants are sources of natural antioxidants. Acting as reducing agents, these substances protect the human body against oxidative stress and slow down the aging process. We aimed to study the effects of bioactive substances isolated from medicinal plants on the lifespan of Caenorhabditis elegans L. used as a model organism.
High-performance liquid chromatography was applied to isolate bioactive substances from the extracts of callus, suspension, and root cultures of meadowsweet (Filipendula ulmaria L.), ginkgo (Ginkgo biloba L.), Baikal skullcap (Scutellaria baicalensis L.), red clover (Trifolium pretense L.), alfalfa (Medicágo sativa L.), and thyme (Thymus vulgaris L.). Their effect on the lifespan of C. elegans nematodes was determined by counting live nematodes treated with their concentrations of 10, 50, 100, and 200 µmol/L after 61 days of the experiment. The results were recorded using IR spectrometry.
The isolated bioactive substances were at least 95% pure. We found that the studied concentrations of trans-cinnamic acid, baicalin, rutin, ursolic acid, and magniferin did not significantly increase the lifespan of the nematodes. Naringenin increased their lifespan by an average of 27.3% during days 8–26. Chlorogenic acid at a concentration of 100 µmol/L increased the lifespan of C. elegans by 27.7%. Ginkgo-based kaempferol and quercetin, as well as red clover-based biochanin A at the concentrations of 200, 10, and 100 µmol/L, respectively, increased the lifespan of the nematodes by 30.6, 41.9, and 45.2%, respectively.
The bioactive substances produced from callus, root, and suspension cultures of the above medicinal plants had a positive effect on the lifespan of C. elegans nematodes. This confirms their geroprotective properties and allows them to be used as anti-aging agents.
Publisher
Kemerovo State University
Reference83 articles.
1. WHO: People living longer and healthier lives but COVID-19 threatens to throw progress off track [Internet]. [cited 2022 Jan 15]. Available from: https://www.who.int/news/item/13-05-2020-people-living-longer-and-healthier-lives-but-covid-19-threatens-to-throw-progress-off-track, WHO: People living longer and healthier lives but COVID-19 threatens to throw progress off track [Internet]. [cited 2022 Jan 15]. Available from: https://www.who.int/news/item/13-05-2020-people-living-longer-and-healthier-lives-but-covid-19-threatens-to-throw-progress-off-track
2. Bosch-Morell F, Villagrasa V, Ortega T, Acero N, Muñoz-Mingarro D, González-Rosende M, et al. Medicinal plants and natural products as neuroprotective agents in age–related macular degeneration. Neural Regeneration Research. 2020;15(12):2207–2216. https://doi.org/10.4103/1673-5374.284978, Bosch-Morell F, Villagrasa V, Ortega T, Acero N, Muñoz-Mingarro D, González-Rosende M, et al. Medicinal plants and natural products as neuroprotective agents in age–related macular degeneration. Neural Regeneration Research. 2020;15(12):2207–2216. https://doi.org/10.4103/1673-5374.284978
3. Elfawy HA, Das B. Crosstalk between mitochondrial dysfunction, oxidative stress, and age related neurodegenerative disease: Etiologies and therapeutic strategies. Life Sciences. 2019;218:165–184. https://doi.org/10.1016/j.lfs.2018.12.029, Elfawy HA, Das B. Crosstalk between mitochondrial dysfunction, oxidative stress, and age related neurodegenerative disease: Etiologies and therapeutic strategies. Life Sciences. 2019;218:165–184. https://doi.org/10.1016/j.lfs.2018.12.029
4. Tan BL, Norhaizan ME, Liew W-P-P, Rahman HS. Antioxidant and oxidative stress: A mutual interplay in age–related diseases. Frontiers in Pharmacology. 2018;9. https://doi.org/10.3389/fphar.2018.01162, Tan BL, Norhaizan ME, Liew W-P-P, Rahman HS. Antioxidant and oxidative stress: A mutual interplay in age–related diseases. Frontiers in Pharmacology. 2018;9. https://doi.org/10.3389/fphar.2018.01162
5. Prosekov AYu, Dyshlyuk LS, Milentyeva IS, Sykhikh SA, Babich OO, Ivanova SA, et al. Antioxidant and antimicrobial activity of bacteriocin-producing strains of lactic acid bacteria isolated from the human gastrointestinal tract. Progress in Nutrition. 2017;19(1):67–80. https://doi.org/10.23751/pn.v19i1.5147, Prosekov AYu, Dyshlyuk LS, Milentyeva IS, Sykhikh SA, Babich OO, Ivanova SA, et al. Antioxidant and antimicrobial activity of bacteriocin-producing strains of lactic acid bacteria isolated from the human gastrointestinal tract. Progress in Nutrition. 2017;19(1):67–80. https://doi.org/10.23751/pn.v19i1.5147
Cited by
16 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献