Pomegranate leaves, buds, and flowers: phytochemical, antioxidant, and comparative solvent analyzes

Author:

Tekin Zehra1ORCID,Kucukbay F.Zehra2ORCID

Affiliation:

1. Adıyaman University

2. İnönü University

Abstract

Punica granatum L. possesses significant nutritional and medicinal potential. Its pharmacological activities have been investigated, but no comparative evaluation has been reported regarding the effect of different extraction solvents on the phytochemical content and antioxidant activity of its leaf, bud, and flower extracts. This research involved seven various solvents, namely methanol, ethanol, water, acidified methanol, acidified ethanol, acidified water, and hexane. A set of experiments made it possible to define the effect of each of these solvents on the contents of phenolics, flavonoids, flavanols, flavonols, anthocyanins, and tannins, as well as on the antioxidant activity of pomegranate leaf, bud and flower tissues. The research objective was to identify the optimal solvent for the most effective extraction of the abovementioned functional compounds. The antioxidant activity tests involved DPPH free radical scavenging, metal chelating, iron (III) reducing power, and CUPRAC assays. The aqueous extract of P. granatum leaves demonstrated the highest total phenolic content (192.57 mg GAE/g extract) while the greatest flavonoid content belonged to the acidified methanol extract of P. granatum buds (73.93 mg RE/g extract). The HPLC analysis detected such significant phenolic compounds as punicalagin in buds and flowers, as well as gallic acid in leaves. All the extracts showed good antioxidant activity; however, the bud extracts had a better antioxidant profile than the extracts from leaves and flowers. The pomegranate leaf, bud, and flower extracts demonstrated excellent phytochemical and antioxidant properties, which makes it possible to recommend these plant tissues as raw materials to be used in pharmaceutical, food, nutraceutical, and cosmetic industries.

Publisher

Kemerovo State University

Reference77 articles.

1. Das K, Roychoudhury A. Reactive oxygen species (ROS) and response of antioxidants as ROS-scavengers during environmental stress in plants. Frontiers in Environmental Science. 2014;2:53. https://doi.org/10.3389/fenvs.2014.00053, Das K, Roychoudhury A. Reactive oxygen species (ROS) and response of antioxidants as ROS-scavengers during environmental stress in plants. Frontiers in Environmental Science. 2014;2:53. https://doi.org/10.3389/fenvs.2014.00053

2. Demirci-Çekiç S, Özkan G, Avan AN, Uzunboy S, Çapanoğlu E, Apak R. Biomarkers of oxidative stress and antioxidant defense. Journal of Pharmaceutical and Biomedical Analysis. 2022;209:114477. https://doi.org/10.1016/j.jpba.2021.114477, Demirci-Çekiç S, Özkan G, Avan AN, Uzunboy S, Çapanoğlu E, Apak R. Biomarkers of oxidative stress and antioxidant defense. Journal of Pharmaceutical and Biomedical Analysis. 2022;209:114477. https://doi.org/10.1016/j.jpba.2021.114477

3. Juan CA, Pérez de la Lastra JM, Plou FJ, Pérez-Lebeña E. The chemistry of reactive oxygen species (ROS) revisited: Outlining their role in biological macromolecules (DNA, lipids and proteins) and induced pathologies. International Journal of Molecular Sciences 2021;22(9):4642. https://doi.org/10.3390/ijms22094642, Juan CA, Pérez de la Lastra JM, Plou FJ, Pérez-Lebeña E. The chemistry of reactive oxygen species (ROS) revisited: Outlining their role in biological macromolecules (DNA, lipids and proteins) and induced pathologies. International Journal of Molecular Sciences 2021;22(9):4642. https://doi.org/10.3390/ijms22094642

4. Redza-Dutordoir M, Averill-Bates DA. Activation of apoptosis signalling pathways by reactive oxygen species. Biochimica et Biophysica Acta (BBA) – Molecular Cell Research. 2016;1863(12):2977–2992. https://doi.org/10.1016/j.bbamcr.2016.09.012, Redza-Dutordoir M, Averill-Bates DA. Activation of apoptosis signalling pathways by reactive oxygen species. Biochimica et Biophysica Acta (BBA) – Molecular Cell Research. 2016;1863(12):2977–2992. https://doi.org/10.1016/j.bbamcr.2016.09.012

5. Birben E, Sahiner UM, Sackesen C, Erzurum S, Kalayci O. Oxidative stress and antioxidant defense. World Allergy Organization Journal. 2012;5(1):9–19. https://doi.org/10.1097/WOX.0b013e3182439613, Birben E, Sahiner UM, Sackesen C, Erzurum S, Kalayci O. Oxidative stress and antioxidant defense. World Allergy Organization Journal. 2012;5(1):9–19. https://doi.org/10.1097/WOX.0b013e3182439613

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3