Affiliation:
1. All-Russian Scientific Research Institute of the Dairy Industry
Abstract
Introduction. The article provides a review of technologies for membrane fractionation of various hydrolyzed food substrates in membrane bioreactors (MBR). In food industry, MBRs are popular in functional food production, especially in the processing of whey, which is a very promising raw material due to its physicochemical composition.
Study objects and methods. The research was based on a direct validated analysis of scientific publications and featured domestic and foreign experience in MBR hydrolysis of protein raw material.
Results and discussion. The MBR hydrolysis of proteins combines various biocatalytic and membrane processes. This technology makes it possible to intensify the biocatalysis, optimize the use of the enzyme preparation, and regulate the molecular composition of hydrolysis products. The paper reviews MBRs based on batch or continuous stirring, gradient dilution, ceramic capillary, immobilized enzyme, etc. Immobilized enzymes reduce losses that occur during the production of fractionated peptides. Continuous MBRs are the most economically profitable type, as they are based on the difference in molecular weight between the enzyme and the hydrolysis products.
Conclusion. Continuous stirred tank membrane reactors have obvious advantages over other whey processing reactors. They provide prompt separation of hydrolysates with the required biological activity and make it possible to reuse enzymes.
Publisher
Kemerovo State University
Reference52 articles.
1. Bogatyrev AN, Pryanichnikova NS, Makeeva IA. Natural food – health of the nation. Food Industry. 2017;(8):26–29. (In Russ.)., Bogatyrev AN, Pryanichnikova NS, Makeeva IA. Natural food – health of the nation. Food Industry. 2017;(8):26–29. (In Russ.).
2. Haritonov VD. Priority directions of food technologies developments. Dairy Industry. 2014;(5):4–5. (In Russ.)., Haritonov VD. Priority directions of food technologies developments. Dairy Industry. 2014;(5):4–5. (In Russ.).
3. Zobkova ZS, Fursova TP, Zenina DV, Gavrilina AD, Shelaginova IR. Fermented milk products as a component of functional nutrition. Dairy Industry. 2019;(2):44–46. (In Russ.)., Zobkova ZS, Fursova TP, Zenina DV, Gavrilina AD, Shelaginova IR. Fermented milk products as a component of functional nutrition. Dairy Industry. 2019;(2):44–46. (In Russ.).
4. Zobkova ZS, Fursova TP, Zenina DV, Gavrilina AD, Shelaginova IR. Development of the technology for receiving curds product fortified with functional ingredients. Dairy Industry. 2019;(5):44–46. (In Russ.). https://doi.org/10.31515/1019-8946-2019-5-44-46., Zobkova ZS, Fursova TP, Zenina DV, Gavrilina AD, Shelaginova IR. Development of the technology for receiving curds product fortified with functional ingredients. Dairy Industry. 2019;(5):44–46. (In Russ.). https://doi.org/10.31515/1019-8946-2019-5-44-46.
5. Zobkova ZS. Funktsionalʹnye tselʹnomolochnye produkty [Functional whole milk products]. Dairy Industry. 2006;(3):46–52. (In Russ.)., Zobkova ZS. Funktsionalʹnye tselʹnomolochnye produkty [Functional whole milk products]. Dairy Industry. 2006;(3):46–52. (In Russ.).
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献