Cotransplantation of Mouse Neural Stem Cells (mNSCs) with Adipose Tissue-Derived Mesenchymal Stem Cells Improves mNSC Survival in a Rat Spinal Cord Injury Model

Author:

Oh Jin Soo12,Kim Keung Nyun1,An Sung Su12,Pennant William A.1,Kim Hyo Jin12,Gwak So-Jung12,Yoon Do Heum12,Lim Mi Hyun3,Choi Byung Hyune3,Ha Yoon1

Affiliation:

1. Department of Neurosurgery, Spine & Spinal Cord Institute, College of Medicine, Yonsei University, Seoul, Korea

2. Brain Korea 21 Project for Medical Science, College of Medicine, Yonsei University, Seoul, Korea

3. Division of Biomedical and Bioengineering Sciences, Inha University College of Medicine, Incheon, Korea

Abstract

The low survival rate of graft stem cells after transplantation into recipient tissue is a major obstacle for successful stem cell therapy. After transplantation into the site of spinal cord injury, the stem cells face not only hypoxia due to low oxygen conditions, but also a lack of nutrients caused by damaged tissues and poor vascular supply. To improve the survival of therapeutic stem cells after grafting into the injured spinal cord, we examined the effects of cotransplanting mouse neural stem cells (mNSCs) and adipose tissue-derived mesenchymal stem cells (AT-MSCs) on mNSC viability. The viability of mNSCs in coculture with AT-MSCs was significantly increased compared to mNSCs alone in an in vitro injury model using serum deprivation (SD), hydrogen peroxide (H2O2), and combined (SD + H2O2) injury mimicking the ischemic environment of the injured spinal cord. We demonstrated that AT-MSCs inhibited the apoptosis of mNSCs in SD, H2O2, and combined injury models. Consistent with these in vitro results, mNSCs transplanted into rat spinal cords with AT-MSCs showed better survival rates than mNSCs transplanted alone. These findings suggest that cotransplantation of mNSCs with AT-MSCs may be a more effective transplantation protocol to improve the survival of cells transplanted into the injured spinal cord.

Publisher

SAGE Publications

Subject

Transplantation,Cell Biology,Biomedical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3