In Vivo Evaluation of Pharmacologically Active Microcarriers Releasing Nerve Growth Factor and Conveying PC12 Cells

Author:

Tatard V. M.1,Venier-Julienne M. C.1,Benoit J. P.1,Menei P.12,Montero-Menei C. N.

Affiliation:

1. INSERM U 646, Laboratoire d'Ingénierie de la vectorisation particulaire, 10 rue André Boquel, 49100 Angers, France

2. Service de Neurochirurgie, Centre Hospitalier Universitaire, 4 rue Larrey, 40033 Angers, France

Abstract

Cell therapy will probably become a major therapeutic strategy in the coming years. Nevertheless, few cells survive transplantation when employed as a treatment for neuronal disorders. To address this problem, we have developed a new tool, the pharmacologically active microcarriers (PAM). PAM are biocompatible and biodegradable microparticles coated with cell adhesion molecules, conveying cells on their surface and presenting a controlled delivery of growth factor. Thus, the combined effect of growth factor and coating influences the transported cells by promoting their survival and differentiation and favoring their integration in the host tissue after their complete degradation. Furthermore, the released factor may also influence the microenvironment. In this study, we evaluated their efficacy using nerve growth factor (NGF)-releasing PAM and PC12 cells, in a Parkinson's disease paradigm. After implantation of NGF-releasing or unloaded PAM conveying PC12 cells, or PC12 cells alone, we studied cell survival, differentiation, and apoptosis, as well as behavior of the treated rats. We observed that the NGF-releasing PAM coated with two synthetic peptides (poly-D-lysine and fibronectin-like) induced PC12 cell differentiation and reduced cell death and proliferation. Moreover, the animals receiving this implant presented an improved amphetamine-induced rotational behavior. These findings indicate that PAM could be a promising strategy for cell therapy of neurological diseases and could be employed in other situations with fetal cell transplants or with stem cells.

Publisher

SAGE Publications

Subject

Transplantation,Cell Biology,Biomedical Engineering

Cited by 35 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3