Transplantation of Polymer Encapsulated Neurotransmitter Secreting Cells: Effect of the Encapsulation Technique

Author:

Aebischer P.1,Winn S. R.1,Tresco P. A.1,Jaeger C. B.2,Greene L. A.3

Affiliation:

1. Section of Artificial Organs, Biomaterials and Cellular Technology, Brown University, Providence, RI

2. Center for Paralysis Research, Purdue University, West Lafayette, IN

3. Department of Pathology and Center for Neurobiology and Behavior, Columbia University, New York, NY

Abstract

Deficits associated with neurological diseases may be improved by the transplantation within the brain lesioned target structure of polymer encapsulated cells releasing the missing neurotransmitter. Surrounding cells with a permselective membrane of appropriate molecular weight cut-off allows inward diffusion of nutrients and outward diffusion of neurotransmitters, but prevents immunoglobulins or immune cells from reaching the transplant. This technique therefore allows transplantation of postmitotic cells across species. It also permits neural grafting of transformed cell lines since the polymer capsule prevents the formation of tumors by physically sequestering the transplanted tissue. In the present study, we compared the ability of dopaminesecreting cells, encapsulated by 2 different methods, to reverse experimental Parkinson’s disease, a neurodegenerative disease characterized by motor disturbances due to a lack of dopamine within the striatum following degeneration of the dopaminergic nigro-striatal pathway. PC12 cells were loaded in polyelectrolyte-based microcapsules or thermoplastic-based macrocapsules and maintained in vitro or transplanted in a rat experimental Parkinson model for 4 weeks. Chemically-induced depolarization increased the in vitro release of dopamine from macrocapsules over time, while no increase in release was observed from microcapsules. Encapsulated PC12 cells were able to reduce lesion-induced rotational asymmetry in rats for at least 4 weeks, regardless of the encapsulation technique used. With both encapsulation methods, PC12 cell viability was greater in vivo than in vitro which suggests that the striatum releases trophic factors for PC12 cells. More brain tissue damage was observed with microcapsules than macrocapsules, possibly the result of the difficulty of manipulating the more fragile microcapsules. Material resembling alginate was observed in the brain parenchyma surrounding the microcapsules, whereas no structural changes were observed with poly (acrylonitrile vinyl chloride) based capsules 4 weeks post-implantation. This fact raises questions about the in vivo stability of polyelectrolyte-based capsules implanted in the nervous system. We conclude that the implantation of polymer-encapsulated cells may provide a means for long-term delivery of neurotransmitters providing adequate encapsulation technology.

Publisher

ASME International

Subject

Physiology (medical),Biomedical Engineering

Cited by 61 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3