Polymers for Induction of Revascularization in the Rat Fascial Flap: Application of Vascular Endothelial Growth Factor and Pancreatic Islet Cells

Author:

Linn Thomas1,Erb Doris1,Schneider Darius1,Kidszun Andre1,Elçin A. Eser2,Bretzel Reinhard G.1,Elçin Y. Murat2

Affiliation:

1. Justus Liebig University, Medical Clinic and Policlinic 3, 35392 Giessen, Germany

2. Ankara University, Science Faculty, Tissue Engineering & Biomaterials Laboratory, 06100 Ankara, Turkey

Abstract

One of the major obstacles in transplanting avascular tissue or metabolically active cells for ischemic diseases is the loss of transplanted cells due to lack of oxygen and nutrients in the early posttransplantation period. Biodegradable polymeric tissue engineering scaffolds and hydrogels have a potential to incorporate cells or cellular organoids such as islets of Langerhans and growth factors. In this study, we tested the efficiency of two types of polymeric materials to carry recombinant human vascular endothelial growth factor (rhVEGF) or pancreatic tumor cell lines, namely Ins-1 and AR42J, for the induction of new vessels. Chitosan hydrogel fibers with micropores were prepared and molded into a cylinder construct (5 mm φ 8 mm height). Macroporous PLGA scaffolds with a pore size of 250–400 μm were prepared and cut into cylinders (6 mm φ 3 mm height). Both chitosan and PLGA constructs were loaded with rhVEGF (3 μg) or seeded with the cell lines (5 × 105 cells and 3 × 105 cells/construct, respectively, for AR42J and INS-1 cells), and transplanted into the fascial flaps of Wistar rats. At distinct time points up to 4 weeks postimplantation, polymers were explanted, fixed, and vessel density was counted on sections stained with anti-Factor-VIII antibody. Additionally, the kinetics of rhVEGF release from PLGA microspheres (φ of 50–80 μm) was determined using VEGF Elisa. Endogenous VEGF release from pancreatic rat cell lines was also determined. Light microscopy study was performed on H&E-stained paraffin sections of the islet-polymer samples. The vascular density of rhVEGF-loaded chitosan constructs was increased fourfold 2 weeks after subcutaneous transplantation compared with rhVEGF-unloaded controls (465 ± 144 vs. 104 ± 80 vessels per mm2, p < 0.05). Protein leakage occurred, but was not observed after 2 weeks. Higher insulin content was detected in rat islet grafts transplanted following VEGF application. More than 50% of total rhVEGF was released on the first day of in vitro culture of PLGA microspheres. rhVEGF secretion had another, but smaller, peak on the third day followed by a constant release. By comparison, endogeneous VEGF secretion of pancreatic tumor cells was measured within a 3-day culture period. Biodegradable polymer scaffolds and hydrogels may have potential use as solid supports to induce angiogenesis for pancreatic cell transplantation.

Publisher

SAGE Publications

Subject

Transplantation,Cell Biology,Biomedical Engineering

Cited by 45 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3