A Novel Intron-Encoded Neuropilin-1 Isoform in Pancreatic Islets Associated With Very Young Age of Onset of Type 1 Diabetes

Author:

MacDonald Michael J.1ORCID,Ansari Israr-ul H.1,Riedemann Amy S.1,Stoker Scott W.1,Eickhoff Jens C.2,Chlebeck Peter J.3,Fernandez Luis A.3,Longacre Melissa J.1

Affiliation:

1. 1Childrens Diabetes Center, University of Wisconsin School of Medicine and Public Health, Madison, WI

2. 2Department of Biostatistics & Medical Informatics, University of Wisconsin School of Medicine and Public Health, Madison, WI

3. 3Division of Transplantation Department of Surgery, University of Wisconsin School of Medicine and Public Health, Madison, WI

Abstract

Net synthesis of pancreatic β-cells peaks before 2 years of life. β-Cell mass is set within the first 5 years of life. In-frame translational readthrough of the NRP1 gene exon 9 into intron 9 generates a truncated neuropilin-1 protein lacking downstream sequence necessary for binding VEGF that stimulates β-cell replication. VEGF is critical for developing but not adult islet neogenesis. Herein we show that cells in human pancreatic islets containing the full-length neuropilin-1 possess insulin but cells that contain the truncated neuropilin-1 are devoid of insulin. Decreased insulin cells increases susceptibility to onset of type 1 diabetes at a younger age. We also show that the frequency of a genetic marker in NRP1 intron 9 is higher among patients with onset of type 1 diabetes before age 4 years (31.8%), including those with onset at 0.67–2.00 and 2–4 years, compared with that in patients with onset at 4–8 years, at 8–12 years, and after 16 years (16.1%) with frequency equal to that in subjects without diabetes (16.0%). Decreased insulin cells plus the genetic data are consistent with a low effect mechanism that alters the onset of type 1 diabetes to a very young age in some patients, thus supporting the endotype concept that type 1 diabetes is a heterogeneous disease.

Publisher

American Diabetes Association

Subject

Endocrinology, Diabetes and Metabolism,Internal Medicine

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3