G-CSF Promotes Bone Marrow Cells to Migrate into Infarcted Mice Heart, and Differentiate into Cardiomyocytes

Author:

Fukuhara Shinya12,Tomita Shinji13,Nakatani; Takeshi4,Ohtsu Yoshinori1,Ishida Michiko1,Yutani Chikao2,Kitamura Soichiro3

Affiliation:

1. Department of Regenerative Medicine & Tissue Engineering, National Cardiovascular Center, Osaka, Japan

2. Department of Pathology, National Cardiovascular Center, Osaka, Japan

3. Department of Cardiovascular Surgery, National Cardiovascular Center, Osaka, Japan

4. Department of Organ Transplantation, National Cardiovascular Center, Osaka, Japan

Abstract

A recent study showed that granulocyte-colony stimulating factor (G-CSF) treatment improved the infarcted cardiac function. Although mobilized stem cells may affect it, the mechanism is unclear. In this study, we investigated the origins of stem cells and phenotypic changes of the migrated cells, and evaluated the efficacy of G-CSF. Eighteen C57BL/6 mice were irradiated (900 cGy) and GFP mouse-derived bone marrow cells (GFP-BMC: 106 cells) were injected via a tail vein followed by splenectomy 4 weeks later. Ligation of the left descending coronary artery was performed 2 weeks later. Recombinant human G-CSF (200 μg/kg/day) was injected for 3 days before and 5 days after ligation (group 1, n = 10). Saline was injected in group 2 (n = 8). Four weeks after infarction, hearts and other organs were fixed for histology. The survival rate after postoperative day 3 in group 1 was 100%, while that in group 2 was 50% (p = 0.03). Bone marrow-derived GFP cells (BMD-GFP) in group 1 (103.3 ± 71.9/mm2) were located at the infarcted border area significantly more than those in group 2 (43.6 ± 23.7/mm2) (p < 0.0001). BMD-GFP cells were positive for troponin I (16.6%), myosin heavy chain-slow (16.7%), and nestin (8.8%) in group 1. Ki-67-positive BMD-GFP in group 1 (10.0 ± 7.0/mm2) were significantly more than those in group 2 (4.8 ± 6.1/mm2) (p = 0.01). G-CSF increased the survival rate after infarction. G-CSF promoted BMC to migrate into the infarcted border area. Bone marrow was one of the origins of regenerated cardiomyocytes.

Publisher

SAGE Publications

Subject

Transplantation,Cell Biology,Biomedical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3