Bone Marrow Origin of Endothelial Progenitor Cells Responsible for Postnatal Vasculogenesis in Physiological and Pathological Neovascularization

Author:

Asahara Takayuki1,Masuda Haruchika1,Takahashi Tomono1,Kalka Christoph1,Pastore Christopher1,Silver Marcy1,Kearne Marianne1,Magner Meredith1,Isner Jeffrey M.1

Affiliation:

1. From the Departments of Medicine (Cardiology) and Biomedical Research, St Elizabeth’s Medical Center, Tufts University School of Medicine, Boston, Mass.

Abstract

Abstract —Circulating endothelial progenitor cells (EPCs) have been isolated in peripheral blood of adult species. To determine the origin and role of EPCs contributing to postnatal vasculogenesis, transgenic mice constitutively expressing β-galactosidase under the transcriptional regulation of an endothelial cell–specific promoter (Flk-1/LZ or Tie-2/LZ) were used as transplant donors. Localization of EPCs, indicated by flk-1 or tie-2/lacZ fusion transcripts, were identified in corpus luteal and endometrial neovasculature after inductive ovulation. Mouse syngeneic colon cancer cells (MCA38) were implanted subcutaneously into Flk-1/LZ/BMT (bone marrow transplantation) and Tie-2/LZ/BMT mice; tumor samples harvested at 1 week disclosed abundant flk-1/lacZ and tie-2/lacZ fusion transcripts, and sections stained with X-gal demonstrated that the neovasculature of the developing tumor frequently comprised Flk-1– or Tie-2–expressing EPCs. Cutaneous wounds examined at 4 days and 7 days after skin removal by punch biopsy disclosed EPCs incorporated into foci of neovascularization at high frequency. One week after the onset of hindlimb ischemia, lacZ-positive EPCs were identified incorporated into capillaries among skeletal myocytes. After permanent ligation of the left anterior descending coronary artery, histological samples from sites of myocardial infarction demonstrated incorporation of EPCs into foci of neovascularization at the border of the infarct. These findings indicate that postnatal neovascularization does not rely exclusively on sprouting from preexisting blood vessels (angiogenesis); instead, EPCs circulate from bone marrow to incorporate into and thus contribute to postnatal physiological and pathological neovascularization, which is consistent with postnatal vasculogenesis.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine,Physiology

Cited by 2853 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3