Environmental Housing and Duration of Exposure Affect Striatal Graft Morphology in a Rodent Model of Huntington's Disease

Author:

Döbrössy Máté D.12,Dunnett Stephen B.1

Affiliation:

1. Brain Repair Group, School of Biosciences, Cardiff University, Cardiff CF10 3US, UK

2. Laboratory of Molecular Neurosurgery, Universitätsklinikum Freiburg, 79106 Freiburg, Germany

Abstract

Clinical trials of cell replacement therapy in Huntington's disease have shown its safety, feasibility, and potentially long-lasting effects. However, more needs to be known regarding the conditions that stimulate plasticity and compensation achieved by neural grafts to maximize posttransplantation recovery of such neurorehabilitative therapies. The effects of enriched environment (EE), behavioral experience, and transplantation can each separately influence neuronal plasticity and recovery of function after brain damage, and the mechanisms by which these factors interact to modify the survival, integration, or function of grafted tissues are at present unknown. To investigate the effects of variable housing conditions and duration on morphological and cellular changes within embryonic striatal transplants, rats received unilateral excitotoxic lesions of the striatum, followed by E15 whole-ganglionic eminence suspension grafts. The rats were divided into three groups according to housing: full-time EE, 1 h/day exposure to EE, or standard laboratory cages. The experimental design included “early” (7 weeks postgrafting) and “late” (13 weeks postgrafting) survival time points to explore the effects of exposure lengths to the three housing conditions. The morphological and cellular effects on the grafts were analyzed using immunohistochemistry, cell morphology, image analysis, and enzyme-linked immunoassay. Both the duration of the exposure and the housing conditions were seen to influence multiple parameters of grafted cell morphology. The factors acted either independently (e.g., on graft size), complementarily (e.g., on spine density), or had no distinctive effect (e.g., on lesion size) on graft development. Features of embryonic striatal grafts and their trophic milieu were influenced both by the complexity of the environmental conditions and by the length of exposure to them. The data suggest that neurorehabilitation should be a feature of clinical trials of cell transplantation in order to exploit the underlying mechanisms that promote anatomical integration of the grafted cells and maximize transplant-mediated functional recovery.

Publisher

SAGE Publications

Subject

Transplantation,Cell Biology,Biomedical Engineering

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3