Use of Transduced Adipose Tissue Stromal Cells as Biologic Minipumps to Deliver Levodopa for the Treatment of Neuropathic Pain: Possibilities and Limitations

Author:

Cobacho Nuria1,Serrano Ana Belén1,Casarejos Maria José1,Mena Mari Angeles1,Paíno Carlos Luis1

Affiliation:

1. Servicio de Neurobiología-Investigación, Hospital Ramón y Cajal, 28034 Madrid, Spain

Abstract

Subarachnoidal grafting of monoamine-producing cells has been used with success to treat chronic pain in animal models. In the search for a source of autologous transplantable cells, capable of delivering neuroactive substances to the cerebrospinal fluid (CSF) to treat pain, we have tested adipose tissue-derived stromal cells (ADSCs) transduced to produce levodopa. Intrathecally grafted ADSCs survive for long term adhered to spinal cord and nerve root meninges. Cultured ADSCs were retrovirally transduced with tyrosine hydroxylase (TH) and/or GTP cyclohydroxylase 1 (GCH1) genes and stably expressed them for at least 6 weeks in culture. Singly transduced cultures did not produce measurable levodopa but doubly transduced or a mixture of singly transduced ADSCs were able to efficiently synthesize and release levodopa. When 0.5–1 × 106 TH-and GCH1-expressing ADSCs were intrathecally grafted in rats, elevated levels of levodopa and dopamine metabolites were found in CSF at 3 days, although at lower concentrations than expected. Unexpectedly, no levodopa was measurable in CSF at 6 days. In a rat model of neuropathic pain, intrathecal grafting of doubly transduced cells did not produce antiallodynic effects at 2 or 6 days, even when histological analysis revealed the presence of weak TH-immunoreactive subarachnoidal cell clusters. These results suggested that doubly transduced cells could indeed function as biological minipumps to enhance the dopaminergic neurotransmission at the spinal cord level but transgenes were rapidly silenced after intrathecal grafting. Transgene silencing was mimicked in culture by serum deprivation for 3 days. Serum addition at this point recovered trans-gene expression in just 6 h, as did, to a smaller degree, dbcAMP or histone deacetylase inhibitors. Transgene expression silencing in serum deprivation conditions was prevented by 5′-terminal IRES sequences. The present study does not discard the use of transduced cells as a strategy to treat chronic pain but shows that controlling transgene silencing in implanted cells needs to be achieved first.

Publisher

SAGE Publications

Subject

Transplantation,Cell Biology,Biomedical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3