Coapplication of noisy patterned electrical stimuli and NMDA plus serotonin facilitates fictive locomotion in the rat spinal cord

Author:

Dose Francesco12,Taccola Giuliano12

Affiliation:

1. Neuroscience Area International School for Advanced Studies, Trieste, Italy; and

2. Spinal Person Injury Neurorehabilitation Applied Laboratory, Istituto di Medicina Fisica e Riabilitazione, Udine, Italy

Abstract

A new stimulating protocol [fictive locomotion-induced stimulation (FL istim)], consisting of intrinsically variable weak waveforms applied to a single dorsal root is very effective (though not optimal as it eventually wanes away) in activating the locomotor program of the isolated rat spinal cord. The present study explored whether combination of FL istim with low doses of pharmacological agents that raise network excitability might further improve the functional outcome, using this in vitro model. FL istim was applied together with N-methyl-d-aspartate (NMDA) + serotonin, while fictive locomotion (FL) was electrophysiologically recorded from lumbar ventral roots. Superimposing FL istim on FL evoked by these neurochemicals persistently accelerated locomotor-like cycles to a set periodicity and modulated cycle amplitude depending on FL istim rate. Trains of stereotyped rectangular pulses failed to replicate this phenomenon. The GABAB agonist baclofen dose dependently inhibited, in a reversible fashion, FL evoked by either FL istim or square pulses. Sustained episodes of FL emerged when FL istim was delivered, at an intensity subthreshold for FL, in conjunction with subthreshold pharmacological stimulation. Such an effect was, however, not found when high potassium solution instead of NMDA + serotonin was used. These results suggest that the combined action of subthreshold FL istim (e.g., via epidural stimulation) and neurochemicals should be tested in vivo to improve locomotor rehabilitation after injury. In fact, reactivation of spinal locomotor circuits by conventional electrical stimulation of afferent fibers is difficult, while pharmacological activation of spinal networks is clinically impracticable due to concurrent unwanted effects. We speculate that associating subthreshold chemical and electrical inputs might decrease side effects when attempting to evoke human locomotor patterns.

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3