Optimization of the PVT performance with various orientations of jets and MFFNN-RSA prediction model for smart buildings

Author:

Al-Otaibi Ali1ORCID,Hatatab Ahmed Y.23ORCID,Alruqi Mansoor4ORCID,Alabdullatief Aasem5ORCID,Essa Mohamed A.46ORCID

Affiliation:

1. Department of Civil Engineering, College of Engineering, Shaqra University, Dawadmi, 11911 Riyadh, Saudi Arabia

2. Department of Electrical Engineering, College of Engineering, Shaqra University, Saudi Arabia

3. Electrical Engineering Department, Engineering College, Mansoura University, Egypt

4. Department of Mechanical Engineering, College of Engineering, Shaqra University, Dawadmi, 11911 Riyadh, Saudi Arabia

5. Department of Architecture and Building Science, College of Architecture and Planning, King Saud University, Riyadh 11421, Saudi Arabia

6. Department of Mechanical Power Engineering, Faculty of Engineering, Zagazig University, 44519 Zagazig, Egypt

Abstract

The combined thermal and photovoltaic technology in PV/T systems is considered as a greatly promising technology for smart buildings. Thus, investigations for enhancing the PV/T performance are still proceeding. This research presents an investigation for novel configurations of cooling jets for the PVT system. The linear and circular distribution for the inlet jets considering regular and irregular positioning for all the jets as new cooling configurations are implemented. Moreover, the proposed geometrical configurations are optemized regarding the performance to identify the most suitable configuration that achieves the optimum efficiency and temperature. Furthermore, a novel hybrid ANN model is presented for predicting the performance of the PVT systems. This model combines the multi-feedforward neural network (MFFNN) with an optimization technique called reptile search algorithm (RSA). The proposed model can process the studied parameters to predict the PVT performance parameters (top surface temperature, temperature un-uniformity, outlet temperature, and efficiencies). The proposed MFFNN-RSA model minimized the mean square error to less than 0.4857×10-3. The maximum temperature decrease achieved by the presented configuration reached 60.62K compared to the uncooled case, while the minimum temperature un-uniformity reached 1K and 6K for 400 and 1000 W/m2, respectively. The increase of the ambient temperature found to decrease the temperature un-uniformity in all the cases. The irregular jet with the linear distribution was found to achieve the optimum performance of the overall, thermal, and electrical efficiencies of 63.5%, 49.6%, and 14.25%, respectively. Furthermore, the electricity production cost was reduced by 11.6%, and the yearly CO2 emissions were reduced by 215.3 kg/m2 compared to the normal PV system. The proposed irregular-line distribution of the jets is found to be the best configuration regarding the temperature of the PV model and the overall efficiency considering the pumping losses.

Publisher

Center of Biomass and Renewable Energy Scientia Academy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3