Machine Learning Prediction Models of Electrical Efficiency of Photovoltaic-Thermal Collectors

Author:

Ahmadi Mohammad Hossein,Baghban Alireza,Salwana Ely,Sadeghzadeh MiladORCID,Zamen Mohammad,Shamshirband ShahabORCID,Kumar Ravinder

Abstract

Solar energy is a renewable resources of energy which is broadly utilized and have the least pollution impact between the available alternatives of fossil fuels. In this investigation, machine leaening approaches of neural networks (NN), neuro-fuzzy and least squares support vector machine (LSSVM) are used to build the models for prediction of the thermal performance of a photovoltaic-thermal solar collector (PV/T) by estimating its efficiency as an output of the model while inlet temperature, flow rate, heat, solar radiation, and heat of sun are input of the designed model. Experimental measurements was prepared by designing a solar collector system and 100 data extracted. Different analyses are also performed to examine the credibility of the introduced approaches revealing great performance. The suggested LSSVM model represented the best performance regarding the mean squared error (MSE) of 0.003 and correlation coefficient (R2) value of 0.99, respectively.

Publisher

MDPI AG

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3