Author:
Et. al. Yusuf Aliyu Adamu,
Abstract
Measures have been taking to ensure the safety of individuals from the burden of vector-borne disease but it remains the causative agent of death than any other diseases in Africa. Many human lives are lost particularly of children below five years regardless of the efforts made. The effect of malaria is much more challenging mostly in developing countries. In 2019, 51% of malaria fatality happen in Africa which it increased by 20% in 2020 due to the covid-19 pandemic. The majority of African countries lack a proper or a sound health care system, proper environmental settlement, economic hardship, limited funding in the health sector, and absence of good policies to ensure the safety of individuals. Information has to become available to the peoples on the effect of malaria by making public awareness program to make sure people become acquainted with the disease so that certain measure can be maintained. The prediction model can help the policymakers to know more about the expected time of the malaria occurrence based on the existing features so that people will get to know the information regarding the disease on time, health equipment and medication to be made available by government through it policy. In this research weather condition, non-climatic features, and malaria cases are considered in designing the model for prediction purposes and also the performance of six different machine learning classifiers for instance Support Vector Machine, K-Nearest Neighbour, Random Forest, Decision Tree, Logistic Regression, and Naïve Bayes is identified and found that Random Forest is the best with accuracy (97.72%), AUC (98%) AUC, and (100%) precision based on the data set used in the analysis.
Publisher
Auricle Technologies, Pvt., Ltd.
Subject
Computational Theory and Mathematics,Computational Mathematics,General Mathematics,Education
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献