Machine Learning based Attacks Detection and Countermeasures in IoT

Author:

Zagrouba Rachid,AlHajri Reem

Abstract

While the IoT offers important benefits and opportunities for users, the technology raises various security issues and threats. These threats may include spreading IoT botnets through IoT devices which are the common and most malicious security threat in the world of internet. Protecting the IoT devices against these threats and attacks requires efficient detection. While we need to take into consideration IoT devices memory capacity limitation and low power processors. In this paper, we will focus in proposing low power consumption Machine Learning (ML) techniques for detecting IoT botnet attacks using Random forest as ML-based detection method and describing IoT common attacks with its countermeasures. The experimental result of our proposed solution shows higher accuracy. From the results, we conclude that IoT botnet detection is possible; achieving a higher accuracy rate as an experimental result indicates an accuracy rate of over 99.99% where the true positive rate is 1.000 and the false-negative rate is 0.000.

Publisher

Auricle Technologies, Pvt., Ltd.

Subject

Computer Networks and Communications

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Towards Detection of DDoS Attacks in IoT with Optimal Features Selection;Wireless Personal Communications;2024-07

2. COMPARATIVE ANALYSIS OF RANDOM FOREST AND ADABOOST LEARNING MODELS FOR THE CLASSIFICATION OF ATTACKS IN INTERNET OF THINGS;FUDMA JOURNAL OF SCIENCES;2024-06-30

3. Aquila Optimization Algorithm based Feature Selection with Optimal Machine Learning for Security Internet of Things Environment;2024 International Conference on Knowledge Engineering and Communication Systems (ICKECS);2024-04-18

4. Ensemble Machine Learning‐Based Botnet Attack Detection for IoT Applications;Metaheuristics for Machine Learning;2024-03-29

5. Voting Model Strategies for Reliable Categorical IoT-DDoS Attack Prediction;International Journal of Scientific Research in Computer Science, Engineering and Information Technology;2024-03-28

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3