Voting Model Strategies for Reliable Categorical IoT-DDoS Attack Prediction

Author:

Sinha Shivani Sinha,Degadwala Dr. Sheshang Degadwala

Abstract

This research focuses on developing reliable categorical IoT-DDoS attack prediction models using ensemble voting strategies. The study explores various machine learning algorithms suitable for categorical data analysis, employing feature engineering techniques to preprocess IoT data. Ensemble learning methodologies, including bagging, boosting, and stacking, are then utilized to build robust prediction models. Evaluation metrics such as precision, recall, F1-score, and AUC-ROC are used to assess model performance, demonstrating the effectiveness of ensemble voting models in reliably predicting IoT-DDoS attacks. Comparative analyses with individual classifiers highlight the advantages of ensemble approaches in terms of predictive accuracy and robustness against data imbalances and noise. This work contributes to advancing IoT security by providing a practical framework for deploying predictive models that aid in early detection and mitigation of DDoS attacks, enhancing overall resilience against cyber threats in IoT ecosystems.

Publisher

Technoscience Academy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3