Big Stimulus, Little Ears: Safety in Administering Vestibular-Evoked Myogenic Potentials in Children

Author:

Thomas Megan L. A.,Fitzpatrick Denis,McCreery Ryan,Janky Kristen L.

Abstract

Background: Cervical and ocular vestibular-evoked myogenic potentials (VEMPs) have become common clinical vestibular assessments. However, VEMP testing requires high intensity stimuli, raising concerns regarding safety with children, where sound pressure levels may be higher due to their smaller ear canal volumes. Purpose: The purpose of this study was to estimate the range of peak-to-peak equivalent sound pressure levels (peSPLs) in child and adult ears in response to high intensity stimuli (i.e., 100 dB normal hearing level [nHL]) commonly used for VEMP testing and make a determination of whether acoustic stimuli levels with VEMP testing are safe for use in children. Research Design: Prospective experimental. Study Sample: Ten children (4–6 years) and ten young adults (24–35 years) with normal hearing sensitivity and middle ear function participated in the study. Data Collection and Analysis: Probe microphone peSPL measurements of clicks and 500 Hz tonebursts (TBs) were recorded in tubes of small, medium, and large diameter, and in a Brüel & Kjær Ear Simulator Type 4157 to assess for linearity of the stimulus at high levels. The different diameter tubes were used to approximate the range of cross-sectional areas in infant, child, and adult ears, respectively. Equivalent ear canal volume and peSPL measurements were then recorded in child and adult ears. Lower intensity levels were used in the participant’s ears to limit exposure to high intensity sound. The peSPL measurements in participant ears were extrapolated using predictions from linear mixed models to determine if equivalent ear canal volume significantly contributed to overall peSPL and to estimate the mean and 95% confidence intervals of peSPLs in child and adult ears when high intensity stimulus levels (100 dB nHL) are used for VEMP testing without exposing subjects to high-intensity stimuli. Results: Measurements from the coupler and tubes suggested: 1) each stimuli was linear, 2) there were no distortions or nonlinearities at high levels, and 3) peSPL increased with decreased tube diameter. Measurements in participant ears suggested: 1) peSPL was approximately 3 dB larger in child compared to adult ears, and 2) peSPL was larger in response to clicks compared to 500 Hz TBs. The model predicted the following 95% confidence interval for a 100 dB nHL click: 127–136.5 dB peSPL in adult ears and 128.7–138.2 dB peSPL in child ears. The model predicted the following 95% confidence interval for a 100 dB nHL 500 Hz TB stimulus: 122.2–128.2 dB peSPL in adult ears and 124.8–130.8 dB peSPL in child ears. Conclusions: Our findings suggest that 1) when completing VEMP testing, the stimulus is approximately 3 dB higher in a child’s ear, 2) a 500 Hz TB is recommended over a click as it has lower peSPL compared to the click, and 3) both duration and intensity should be considered when choosing VEMP stimuli. Calculating the total sound energy exposure for your chosen stimuli is recommended as it accounts for both duration and intensity. When using this calculation for children, consider adding 3 dB to the stimulus level.

Publisher

Georg Thieme Verlag KG

Subject

Speech and Hearing

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3