Predicting A Growing Stage of Rice Plants Based on The Cropping Records over 25 Years — A Trial of Feature Engineering Incorporating Hidden Regional Characteristics —

Author:

UEHARA Hiroshi1,IUCHI Yasuhiro2,FUKAZAWA Yusuke3,KANETA Yoshihiro2

Affiliation:

1. Rissho University

2. Akita Prefectural University

3. Waseda University

Publisher

Institute of Electronics, Information and Communications Engineers (IEICE)

Subject

Artificial Intelligence,Electrical and Electronic Engineering,Computer Vision and Pattern Recognition,Hardware and Architecture,Software

Reference22 articles.

1. [1] A. Kaneko, T. Kennedy, L. Mei, C. Sintek, M. Burke, S. Ermon, and D. Lobell, “Deep learning for crop yield prediction in Africa,” Proc. Stanford Woods Institute for the Environment, https://woods.stanford.edu/publications/deep-learning-crop-yield-prediction-africa, 2019.

2. [2] L. Petersen, “Real-time prediction of crop yields from MODIS relative vegetation health: A continent-wide analysis of Africa,” Remote Sensing, vol.10, no.11, pp.1726-1757, 2018. 10.3390/rs10111726

3. [3] Y. Zhang, Y. Zhao, S. Chen, J. Guo, and E. Wang, “Prediction of maize yield response to climate change with climate and crop model uncertainties,” J. Applied Meteorology and Climatology, vol.54, no.4, pp.785-794, 2015. (journal) 10.1175/JAMC-D-14-0147.1

4. [4] J. Masanganise, B. Chipindu, T. Mhizha, and E. Mashonjowa, “Model prediction of maize yield responses to climate change in north-eastern Zimbabwe,” African Crop Science Journal, vol.20, no.2, pp.505-515, 2012.

5. [5] N. Gandhi, L.J. Armstrong, O. Petkar, and A.K. Tripathy, “Rice crop yield prediction in India using support vector machines,” Proc. The 13th International Joint Conference on Computer Science and Software Engineering (JCSSE), 2016. 10.1109/JCSSE.2016.7748856

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. GIS-based Meteorological Disaster Risk Assessment for Rice in Northeast China in the Context of Big Data;2023 International Conference on Computer Simulation and Modeling, Information Security (CSMIS);2023-11-15

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3