Real-Time Prediction of Crop Yields From MODIS Relative Vegetation Health: A Continent-Wide Analysis of Africa

Author:

Petersen LillianORCID

Abstract

Developing countries often have poor monitoring and reporting of weather and crop health, leading to slow responses to droughts and food shortages. Here, I develop satellite analysis methods and software tools to predict crop yields two to four months before the harvest. This method measures relative vegetation health based on pixel-level monthly anomalies of NDVI, EVI and NDWI indices. Because no crop mask, tuning, or subnational ground truth data are required, this method can be applied to any location, crop, or climate, making it ideal for African countries with small fields and poor ground observations. Testing began in Illinois where there is reliable county-level crop data. Correlations were computed between corn, soybean, and sorghum yields and monthly vegetation health anomalies for every county and year. A multivariate regression using every index and month (up to 1600 values) produced a correlation of 0.86 with corn, 0.74 for soybeans, and 0.65 for sorghum, all with p-values less than 10 − 6 . The high correlations in Illinois show that this model has good forecasting skill for crop yields. Next, the method was applied to every country in Africa for each country’s main crops. Crop production was then predicted for the 2018 harvest and compared to actual production values. Twenty percent of the predictions had less than 2% error, and 40% had less than 5% error. This method is unique because of its simplicity and versatility: it shows that a single user on a laptop computer can produce reasonable real-time estimates of crop yields across an entire continent.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Reference67 articles.

1. An Overview of the Global Historical Climatology Network-Daily Database

2. GHCN-D: Global Historical Climatology Network Daily Temperatures NCAR—Climate Data Guidehttps://climatedataguide.ucar.edu/climate-data/ghcn-d-global-historical-climatology-network-daily-temperatures

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3