HFSTE: Hybrid Feature Selections and Tree-Based Classifiers Ensemble for Intrusion Detection System
Author:
Affiliation:
1. Faculty of Computer Science, University of Sriwijaya
2. Laboratory of Information Security and Internet Applications (LISIA), Dept. of IT Convergence and Application Engineering, Pukyong National University
Publisher
Institute of Electronics, Information and Communications Engineers (IEICE)
Subject
Artificial Intelligence,Electrical and Electronic Engineering,Computer Vision and Pattern Recognition,Hardware and Architecture,Software
Link
https://www.jstage.jst.go.jp/article/transinf/E100.D/8/E100.D_2016ICP0018/_pdf
Reference36 articles.
1. [1] B.A. Tama and K.H. Rhee, “Performance analysis of multiple classifier system in DoS attack detection,” International Workshop on Information Security Applications, pp.339-347, 2015.
2. [2] B.A. Tama and K.H. Rhee, “Data mining techniques in DoS/DDoS attack detection: A literature review,” Information (Japan), vol.18, no.8, p.3739, 2015.
3. [3] X.-S. Gan, J.-S. Duanmu, J.-F. Wang, and W. Cong, “Anomaly intrusion detection based on PLS feature extraction and core vector machine,” Knowledge-Based Systems, vol.40, pp.1-6, 2013. 10.1016/j.knosys.2012.09.004
4. [4] B.A. Tama and K.H. Rhee, “A combination of PSO-based feature selection and tree-based classifiers ensemble for intrusion detection systems,” in Advances in Computer Science and Ubiquitous Computing, vol.373, pp.489-495, Springer, 2015. 10.1007/978-981-10-0281-6_71
5. [5] S. Mukkamala, A.H. Sung, and A. Abraham, “Intrusion detection using an ensemble of intelligent paradigms,” J. Netw. Comput. Appl., vol.28, no.2, pp.167-182, 2005. 10.1016/j.jnca.2004.01.003
Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Machine Learning Classification for Intrusion Detection Systems Using the NSL-KDD Dataset;2024 IEEE International Conference on Cybernetics and Innovations (ICCI);2024-03-29
2. A High-Performance Multimodal Deep Learning Model for Detecting Minority Class Sample Attacks;Symmetry;2023-12-28
3. Enhancing Network Intrusion Detection Using an Ensemble Voting Classifier for Internet of Things;Sensors;2023-12-26
4. Cloud-Based Intrusion Detection Approach Using Machine Learning Techniques;Big Data Mining and Analytics;2023-09
5. Efficient random subspace decision forests with a simple probability dimensionality setting scheme;Information Sciences;2023-08
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3