Affiliation:
1. Faculty of Computing and AI, Air University, Islamabad 44000, Pakistan
2. Centre for Artificial Intelligence Research, Department of Information and Communication Technology, University of Agder, 4879 Grimstad, Norway
3. Department of Electrical Engineering and Computer Engineering, Capital University of Science and Technology, Islamabad 44000, Pakistan
Abstract
In the context of 6G technology, the Internet of Everything aims to create a vast network that connects both humans and devices across multiple dimensions. The integration of smart healthcare, agriculture, transportation, and homes is incredibly appealing, as it allows people to effortlessly control their environment through touch or voice commands. Consequently, with the increase in Internet connectivity, the security risk also rises. However, the future is centered on a six-fold increase in connectivity, necessitating the development of stronger security measures to handle the rapidly expanding concept of IoT-enabled metaverse connections. Various types of attacks, often orchestrated using botnets, pose a threat to the performance of IoT-enabled networks. Detecting anomalies within these networks is crucial for safeguarding applications from potentially disastrous consequences. The voting classifier is a machine learning (ML) model known for its effectiveness as it capitalizes on the strengths of individual ML models and has the potential to improve overall predictive performance. In this research, we proposed a novel classification technique based on the DRX approach that combines the advantages of the Decision tree, Random forest, and XGBoost algorithms. This ensemble voting classifier significantly enhances the accuracy and precision of network intrusion detection systems. Our experiments were conducted using the NSL-KDD, UNSW-NB15, and CIC-IDS2017 datasets. The findings of our study show that the DRX-based technique works better than the others. It achieved a higher accuracy of 99.88% on the NSL-KDD dataset, 99.93% on the UNSW-NB15 dataset, and 99.98% on the CIC-IDS2017 dataset, outperforming the other methods. Additionally, there is a notable reduction in the false positive rates to 0.003, 0.001, and 0.00012 for the NSL-KDD, UNSW-NB15, and CIC-IDS2017 datasets.
Subject
Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry
Reference66 articles.
1. A Survey on the Metaverse: The State-of-the-Art, Technologies, Applications, and Challenges;Wang;IEEE Internet Things J.,2023
2. Anwer, A.H., Khan, N., Ansari, M.Z., Baek, S.S., Yi, H., Kim, S., Noh, S.M., and Jeong, C. (2022). Recent Advances in Touch Sensors for Flexible Wearable Devices. Sensors, 22.
3. A Survey on Metaverse: Fundamentals, Security, and Privacy;Wang;IEEE Commun. Surv. Tutor.,2023
4. CANN: An intrusion detection system based on combining cluster centers and nearest neighbors;Lin;Knowl. Based Syst.,2015
5. On the combination of genetic fuzzy systems and pairwise learning for improving detection rates on intrusion detection systems;Elhag;Expert Syst. Appl.,2015
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献