Affiliation:
1. Toyota Central Research and Development Laboratories Incorporated
2. Eurus Technical Service Corporation
3. Toyota Tsusho Corporation
Publisher
Institute of Electronics, Information and Communications Engineers (IEICE)
Subject
Artificial Intelligence,Electrical and Electronic Engineering,Computer Vision and Pattern Recognition,Hardware and Architecture,Software
Reference8 articles.
1. [1] K. Kim, G. Parthasarathy, O. Uluyol, W. Foslien, S. Sheng, and P. Fleming, “Use of SCADA data for failure detection in wind turbines,” Proc. Energy Sustainability Conference and Fuel Cell Conference, Aug. 2011. 10.1115/ES2011-54243
2. [2] H.H. Yang, M.L. Huang, and S.W. Yang, “Integrating auto-associative neural networks with hotelling T2 control charts for wind turbine fault detection,” Energies, vol.8, no.10, pp.12100-12115, 2015. 10.3390/en81012100
3. [3] L. Wang, Z. Zhang, J. Xu, and R. Liu, “Wind turbine blade breakage monitoring with deep autoencoders,” IEEE Tran Trans. Smart Grid, vol.9, no.4, pp.2824-2833, July 2018. 10.1109/TSG.2016.2621135
4. [4] G. Jiang, P. Xie, H. He, and J. Yan, “Wind turbine Fault detection using a denoising autoencoder with temporal information,” IEEE/ASM Trans. Mechatronics, vol.23, no.1, pp.89-100, Feb. 2018. 10.1109/TMECH.2017.2759301
5. [5] J. Ogata and M. Murakawa, “Vibration-based anomaly detection using FLAC features for wind turbine condition monitoring,” Proc. 8th European Workshop on Structural Health Monitoring (EW-SHM), vol.3, pp.1952-1961, Aug. 2016.
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献