Use of SCADA Data for Failure Detection in Wind Turbines

Author:

Kim Kyusung1,Parthasarathy Girija1,Uluyol Onder1,Foslien Wendy1,Sheng Shuangwen2,Fleming Paul2

Affiliation:

1. Honeywell, Golden Valley, MN

2. National Renewable Energy Labs, Golden, CO

Abstract

High operations and maintenance costs for wind turbines reduce their overall cost effectiveness. One of the biggest drivers of maintenance cost is unscheduled maintenance due to unexpected failures. Continuous monitoring of wind turbine health using automated failure detection algorithms can improve turbine reliability and reduce maintenance costs by detecting failures before they reach a catastrophic stage and by eliminating unnecessary scheduled maintenance. A SCADA (Supervisory Control and Data Acquisition System) -data based condition monitoring system uses data already collected at the wind turbine controller. It is a cost-effective way to monitor wind turbines for early warning of failures and performance issues. In this paper, we describe our exploration of existing wind turbine SCADA data for development of fault detection and diagnostic techniques for wind turbines. We used a number of measurements to develop anomaly detection algorithms and investigated classification techniques using clustering algorithms and principal components analysis for capturing fault signatures. Anomalous signatures due to a reported gearbox failure are identified from a set of original measurements including rotor speeds and produced power.

Publisher

ASMEDC

Cited by 49 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3