An extended binary subband canonical correlation analysis detection algorithm oriented to the radial contraction-expansion motion steady-state visual evoked paradigm

Author:

Zhao Yuxue12,Zhang Hongxin12,Wang Yuanzhen1,Li Chenxu1,Xu Ruilin1,Yang Chen1

Affiliation:

1. School of Electronic Engineering, Beijing University of Posts and Telecommunications, Beijing 100876, China

2. These authors contributed equally to this work.

Abstract

The radial contraction-expansion motion paradigm is a novel steady-state visual evoked experimental paradigm, and the electroencephalography (EEG) evoked potential is different from the traditional luminance modulation paradigm. The signal energy is concentrated chiefly in the fundamental frequency, while the higher harmonic power is lower. Therefore, the conventional steady-state visual evoked potential recognition algorithms optimizing multiple harmonic response components, such as the extended canonical correlation analysis (eCCA) and task-related component analysis (TRCA) algorithm, have poor recognition performance under the radial contraction-expansion motion paradigm. This paper proposes an extended binary subband canonical correlation analysis (eBSCCA) algorithm for the radial contraction-expansion motion paradigm. For the radial contraction-expansion motion paradigm, binary subband filtering was used to optimize the weighting coefficients of different frequency response signals, thereby improving the recognition performance of EEG signals. The results of offline experiments involving 13 subjects showed that the eBSCCA algorithm exhibits a better performance than the eCCA and TRCA algorithms under the stimulation of the radial contraction-expansion motion paradigm. In the online experiment, the average recognition accuracy of 13 subjects was 88.68% ± 6.33%, and the average information transmission rate (ITR) was 158.77 ± 43.67 bits/min, which proved that the algorithm had good recognition effect signals evoked by the radial contraction-expansion motion paradigm.

Publisher

Tsinghua University Press

Subject

Microbiology (medical),Immunology,Immunology and Allergy

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Health Assessment Method of Equipment in Distribution Court Based on Big Data Analysis in the Framework of Distribution Network of Things;International Journal of Information Technologies and Systems Approach;2023-07-21

2. Parametric Model for Coaxial Cavity Filter with Combined KCCA and MLSSVR;International Journal of Antennas and Propagation;2023-06-07

3. Automatic Evaluation System of Aerobics based on Action Recognition Algorithm;Proceedings of the 2022 4th International Conference on Software Engineering and Development;2022-11-25

4. Multisymbol Time Division Coding for High-Frequency Steady-State Visual Evoked Potential-Based Brain-Computer Interface;IEEE Transactions on Neural Systems and Rehabilitation Engineering;2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3