Steady-State Motion Visual Evoked Potential (SSMVEP) Enhancement Method Based on Time-Frequency Image Fusion

Author:

Yan Wenqiang12ORCID,Xu Guanghua12ORCID,Chen Longting12,Zheng Xiaowei12ORCID

Affiliation:

1. School of Mechanical Engineering, Xi’an Jiaotong University, Xi’an, China

2. State Key Laboratory for Manufacturing Systems Engineering, Xi’an Jiaotong University, Xi’an, China

Abstract

The steady-state motion visual evoked potential (SSMVEP) collected from the scalp suffers from strong noise and is contaminated by artifacts such as the electrooculogram (EOG) and the electromyogram (EMG). Spatial filtering methods can fuse the information of different brain regions, which is beneficial for the enhancement of the active components of the SSMVEP. Traditional spatial filtering methods fuse electroencephalogram (EEG) in the time domain. Based on the idea of image fusion, this study proposed an SSMVEP enhancement method based on time-frequency (T-F) image fusion. The purpose is to fuse SSMVEP in the T-F domain and improve the enhancement effect of the traditional spatial filtering method on SSMVEP active components. Firstly, two electrode signals were transformed from the time domain to the T-F domain via short-time Fourier transform (STFT). The transformed T-F signals can be regarded as T-F images. Then, two T-F images were decomposed via two-dimensional multiscale wavelet decomposition, and both the high-frequency coefficients and low-frequency coefficients of the wavelet were fused by specific fusion rules. The two images were fused into one image via two-dimensional wavelet reconstruction. The fused image was subjected to mean filtering, and finally, the fused time-domain signal was obtained by inverse STFT (ISTFT). The experimental results show that the proposed method has better enhancement effect on SSMVEP active components than the traditional spatial filtering methods. This study indicates that it is feasible to fuse SSMVEP in the T-F domain, which provides a new idea for SSMVEP analysis.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

General Mathematics,General Medicine,General Neuroscience,General Computer Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3