Oscillatory cAMP signaling rapidly alters H3K4 methylation

Author:

Huff Tyler C1,Camarena Vladimir1ORCID,Sant David W1,Wilkes Zachary1,Van Booven Derek1,Aron Allegra T2,Muir Ryan K3,Renslo Adam R3ORCID,Chang Christopher J245,Monje Paula V6,Wang Gaofeng17ORCID

Affiliation:

1. John P. Hussman Institute for Human Genomics, Dr. John T. Macdonald Foundation Department of Human Genetics, University of Miami Miller School of Medicine, Miami, FL, USA

2. Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA

3. Department of Pharmaceutical Chemistry, University of California, San Francisco, CA, USA

4. Department of Chemistry, University of California, Berkeley, CA, USA

5. Howard Hughes Medical Institute, University of California, Berkeley, CA, USA

6. Department of Neurological Surgery, Indiana University School of Medicine, Indianapolis, IN, USA

7. Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, USA

Abstract

Epigenetic variation reflects the impact of a dynamic environment on chromatin. However, it remains elusive how environmental factors influence epigenetic events. Here, we show that G protein–coupled receptors (GPCRs) alter H3K4 methylation via oscillatory intracellular cAMP. Activation of Gs-coupled receptors caused a rapid decrease of H3K4me3 by elevating cAMP, whereas stimulation of Gi-coupled receptors increased H3K4me3 by diminishing cAMP. H3K4me3 gradually recovered towards baseline levels after the removal of GPCR ligands, indicating that H3K4me3 oscillates in tandem with GPCR activation. cAMP increased intracellular labile Fe(II), the cofactor for histone demethylases, through a non-canonical cAMP target—Rap guanine nucleotide exchange factor-2 (RapGEF2), which subsequently enhanced endosome acidification and Fe(II) release from the endosome via vacuolar H+-ATPase assembly. Removing Fe(III) from the media blocked intracellular Fe(II) elevation after stimulation of Gs-coupled receptors. Iron chelators and inhibition of KDM5 demethylases abolished cAMP-mediated H3K4me3 demethylation. Taken together, these results suggest a novel function of cAMP signaling in modulating histone demethylation through labile Fe(II).

Funder

National Institutes of Health

NIH

Craig H. Neilsen Foundation

Sylvester NIH Funding Program

Chemical Biology Training Grant

Publisher

Life Science Alliance, LLC

Subject

Health, Toxicology and Mutagenesis,Plant Science,Biochemistry, Genetics and Molecular Biology (miscellaneous),Ecology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3