Affiliation:
1. Segal Cancer Center, Lady Davis Institute for Medical Research and Gerald Bronfman Department of Oncology and Departments of Medicine, Human Genetics and Biochemistry, McGill University, Montréal, Québec, Canada
Abstract
Muscle stem cells (MuSCs) have the ability to carry out the specialized function of cell polarization, which is required for the production of one repopulating cell and one myogenic progenitor cell with muscle regeneration capabilities. The mechanisms which regulate proteins involved in establishing MuSC polarity such as Dmd and Itga7 are currently not well understood. Herein, we define the RNA-binding protein Quaking (QKI) as a major regulator alternative splicing of key MuSC polarity factors including Dmd, Itga7, Mark2, and Numb. We generate a conditional QKI knockout mouse, and for the first time it is shown in vivo that deficiency of QKI in MuSCs results in reduced asymmetric cell divisions, leading to a loss of the myogenic progenitor cell population and striking muscle regeneration defects. Transcriptomic analysis of QKI-deficient MuSCs identifies QKI as a regulator of the splicing events which give rise to the mutually exclusive Itga7-X1 and -X2 isoforms. We observe increased X1 expression in QKI-deficient MuSCs and recapitulate this splicing event using antisense oligonucleotide directed against a quaking binding site within the Itga7 mRNA. Interestingly, recreating this single splicing event is detrimental to the polarization of Itga7 and Dmd proteins, and leads to a drastic reduction of the myogenic progenitor population, highlighting the significance of QKI-mediated alternative splicing of Itga7 in maintaining MuSC polarity. Altogether, these findings define a novel role for QKI as a post-transcriptional regulator of MuSC polarity.
Funder
Canadian Institute of Health Research
Publisher
Life Science Alliance, LLC
Subject
Health, Toxicology and Mutagenesis,Plant Science,Biochemistry, Genetics and Molecular Biology (miscellaneous),Ecology
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献