Simulation and Experimental Investigation of the Stay Vane Channel Flow in a Reversible Pump Turbine at Off-Design Conditions

Author:

Erne Sandro,Edinger Gernot,Maly Anton,Bauer Christian

Abstract

This work presents the assessment of the mean flow field and low frequency disturbances in the stay vane channel of a model pump turbine using transient numerical simulations and LDV-based measurements. The focus is laid on transient CFD simulations of characteristic flow states in the stay vane channel when operating at off-design conditions in pump mode. Experimental and numerical investigations obtained a shifting velocity distribution between the shroud and hub of the distributor when continuously increasing the discharge in the part-load range. Simulations captured the occurrence of this changing flow state in the stay vane channel reasonably well. A further increase of the discharge showed a uniformly redistributed mean flow of both hub and shroud side. Monitoring points and integral quantities from measurements and transient simulations were used to interpret the development of transient flow patterns in the stay vane channel at the operating point of strongest asymmetrical flow. During simulation and measurement, a dominant rotating stall inception was observed near the design flow of the pump turbine. At this point where the stall becomes severe, a high level of correlation between the signals of the upper and lower stalled flow in the stay vane channel was calculated. Further simulations for different guide vane positions predicted a strong influence of the guide vane position on the structure of rotating stall.

Publisher

Periodica Polytechnica Budapest University of Technology and Economics

Subject

Mechanical Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3