RANS CFD Analysis of Hump Formation Mechanism in Double-Suction Centrifugal Pump under Part Load Condition

Author:

Liu Yong,Wang Dezhong,Ran Hongjuan,Xu Rui,Song Yu,Gong Bo

Abstract

The RANS (Reynolds-averaged Navier–Stokes equations) with CFD (Computational Fluid Dynamics) simulation method is used to analyze the head hump formation mechanism in the double-suction centrifugal pump under a part load condition. The purpose is to establish a clear connection between the head hump and the microcosmic flow field structure, and reveal the influence mechanism between them. It is found that the diffuser stall causes a change in the impeller capacity for work, and this is the most critical reason for hump formation. The change in the hydraulic loss of volute is also a reason for hump, and it is analyzed using the energy balance equation. The hump formation mechanism has not been fully revealed so far. This paper found the most critical flow structure inducing hump and revealed its inducing mechanism, and greatly promoted the understanding of hump formation. The impeller capacity for work is analyzed using torque and rotational speed directly, avoiding large error caused by the Euler head formula, greatly enhancing the accuracy of establishing the connection between the impeller capacity for work and the coherent structure in the flow field under a part load condition. When a pump is running in the hump area, a strong vibration and noise are prone to occur, endangering the pump safety and reliability, and even the pump start and the transition of different working conditions may be interrupted. Revealing the hump formation mechanism provides a key theoretical basis for suppressing hump. Hump problems are widespread in many kinds of pumps, causing a series of troubles and hazards. The analysis method in this paper also provides a reference for other pumps.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3